Что такое Большой взрыв?
Мы отодвинули границу наших знаний в прошлое почти на 14 млрд лет, к тому времени, когда вся Вселенная была раскалённым термоядерным реактором. Когда я говорю, что верю в гипотезу Большого взрыва, то имею в виду, что я убеждён в истинности следующего утверждения, и не более того:
Всё, что мы можем наблюдать сейчас, когда-то было горячее солнечного ядра и расширялось так быстро, что менее чем за секунду вдвое увеличивалось в размерах.
Этот взрыв, определённо, был достаточно большим, чтобы оправдать прописную букву в своём названии. Учтите, однако: моё определение, очень осторожное, ничего не говорит о том, что было до взрыва. Например, эта гипотеза не подразумевает, что возраст нашей Вселенной в тот момент составлял секунду, или что некогда она была бесконечно плотной, или она возникла из некоей сингулярности, в которой не действовала наша математика. На заданный в прошлой главе вопрос — есть ли у нас доказательство существования сингулярности в момент Большого взрыва? — имеется простой ответ: нет! Конечно, если мы экстраполируем уравнения Фридмана настолько далеко во времени, насколько они позволяют, они перестанут работать при бесконечно плотной сингулярности примерно за секунду до начала первичного нуклеосинтеза. Однако квантово-механическая теория (гл. 7) говорит, что эта экстраполяция перестаёт работать раньше, чем достигается сингулярность. Я думаю, очень важно различать то, чему есть надёжные подтверждения, и то, что пока находится в области спекуляций. Хотя мы располагаем некоторыми интересными теориями (гл. 5), следует прямо заявить, что мы ничего не знаем наверняка. Вот нынешний рубеж наших знаний. Вообще-то мы даже не уверены, что наша Вселенная действительно имела начало, а не занималась непонятно чем вечность до первичного нуклеосинтеза.
Короче говоря, мы отодвинули границу знания на удивление далеко во времени, уяснив ход космической истории (рис. 3.7). Через 1 млн лет после Большого взрыва пространство было заполнено почти однородным прозрачным газом. Если рассматривать космическую драму в обратном порядке, мы увидим, как газ становится всё горячее, его атомы сталкиваются друг с другом всё активнее, пока они не распадаются на ядра и свободные электроны и не образуют плазму. Затем мы увидим, как атомы гелия, сталкиваясь, разбиваются на протоны и нейтроны. А те разбиваются на кварки. Тут мы пересекаем границу знания и входим в сферу научных спекуляций: в гл. 5 мы исследуем то, что на рис. 3.7 названо «инфляцией» и «квантовой пеной». Если мы вернёмся к миллиону лет после Большого взрыва и запустим время вперёд, то увидим, как гравитация увеличивает небольшие сгущения газа, превращая их в галактики, звёзды и все разнообразные космические структуры, которые мы наблюдаем сегодня.
Рис. 3.7. Хотя мы мало что знаем о рождении Вселенной, мы хорошо представляем себе, что случилось в следующие 14 млрд лет. По мере того, как Вселенная расширялась и охлаждалась, кварки объединялись в протоны (ядра водорода) и нейтроны, которые, в свою очередь, сливались в ядра гелия. Затем ядра, захватывая электроны, образовывали атомы, а гравитация сложила из атомов галактики, звёзды и планеты.