Выбрать главу

T = | F||ma|.

При использовании только части силы, затрачиваемой на вращение рычага:

T = |fr||LA|.

Для того чтобы найти вращательный момент, используя величину ротационного компонента, пусть его кратчайшее расстояние от оси сустава будет ПР. ПР — это расстояние на рычаге между точкой приложения силы и осью сустава. Поскольку fr проведен перпендикулярно к рычагу, то ПР будет, по определению, перпендикулярно fr.

На рис. 2.48 показана сила двуглавой мышцы плеча, действующая под углом примерно 80° к рычагу предплечья. Вращающий момент, создаваемый ОСм, можно рассчитать как |fr| х ПР, если |fr| и LA известно. Величину |fr| можно найти графически или математически, разделив вектор силы ОСм на два компонента. Так же как из двух сходящихся сил можно получить путем сложения один равнодействующий вектор, один вектор можно разложить на два сходящихся компонента. В данном случае векторы будут специально построены так, чтобы один из компонентов |fr| находился перпендикулярно рычагу. Второй компонент будет вызывать поступательное движение ft, и этот вектор проводят параллельно рычагу. По сути, поступательный компонент пройдет через ось сустава (хотя такое, как мы увидим позднее, бывает не всегда). Сила, проходящая через ось, не создает вращающего момента, однако придает сегменту линейное движение. Таким образом, разделив ОСм на перпендикулярный и параллельный компоненты, мы получаем как часть ОСм, вызывающую ротацию (часть, действующая перпендикулярно рычагу) и часть ОСм, вызывающую смещение сегмента (часть, действующая параллельно рычагу).

Для разбивки равнодействующего вектора ОСм на рис. 2.48,a на перпендикулярный и параллельный компоненты мы применяем процесс, обратный сложению сил.

Рис. 2.48. Разбивка линии действия мышцы (ОСм) (а) и силы тяжести (СТ) (b) на ротационный (f) и поступательный (f) компоненты

Строится параллелограмм, в котором равнодействующая является диагональю. Здесь, для наших целей, этот параллелограмм всегда будет прямоугольником, стороны которого целенаправленно построены перпендикулярно и параллельно рычагу, т. е. под прямым углом друг к другу. Для построения прямоугольника делается следующее:

• из точки приложения равнодействующей силы проводится вектор компонента fr, перпендикулярно длинной оси движущегося рычага;

• из этой же точки приложения равнодействующей силы проводится вектор компонента ft, параллельно длинной оси движущегося рычага;

• от окончания равнодействующего вектора проводится линия, параллельная fr.

Таким образом, мы построили прямоугольник, диагональю которого является ОСм.

Составляющие векторы fr и ft являются сторонами построенного прямоугольника. Если известен масштаб диаграммы, то графическое решение позволяет измерить компоненты и рассчитать величины. Например, если взять масштаб на рис. 2.48, a как 1:16 см = 4,5 кг, то вектор ОСм имеет размерность в = 145 кг. Поступательный компонент ОСсм = 23 кг, ротационный компонент будет иметь величину в ~= 86 кг. Заметим, что величина равнодействующей не равна арифметической сумме компонентов |fr| и |ft|. В любой системе сходящихся сил сумма компонентов всегда будет больше, чем величина равнодействующей. Определение величин составляющих векторов можно также провести тригонометрическим методом. Если известны величина общей силы и ее угол приложения, то:

|fr| = Fsin Q;

|ft| = Fcos Q.

При любом угле приложения силы, компоненты |fr| и |ft| всегда будут в строго пропорциональных отношениях с общей силой и друг с другом. Например, на рис. 2.48 |fr| почти в 4 раза больше, чем |ft|. Это будет справедливо, независимо от величины равнодействующей (в данном случае, Fms). Если величина Fms увеличивалась или уменьшалась бы, то величина как |fr|, так и |ft| увеличивались и уменьшались бы пропорционально. Вектор |fr| оставался бы при этом примерно в 4 раза длиннее |ft|.

Поступательный компонент любой силы представляет ту ее часть, которая вызывает линейное движение рычага. Поступательный компонент не «тратится», он просто действует в определенном направлении, способствуя любому движению, кроме вращения. В организме человека этот компонент силы может быть направлен либо к анализируемому суставу, либо от него. Поступательное усилие, действующее в направлении сустава, пытается переместить сегмент сустава по направлению к смежному сегменту. Поскольку сегменты при этом сближаются, то поступательное усилие, направленное к суставу, называется компрессионным компонентом. Компрессионный компонент обычно способствует устойчивости сустава, сохраняя контакт между соприкасающимися суставными поверхностями. И наоборот, поступательное усилие, направленное от сустава, стремится разделить смежные суставные сегменты, поэтому его называют компонентом расхождения или разделения. Силы расхождения, действующие в коленном суставе и вызванные применением внешней силы (груза), были показаны в примере с вытягиванием ноги на рис. 2.24.