Имя Кардано, так же как и имя другого замечательного итальянского математика, Никколо Тартальи (1506–1557), связано с задачей об уравнениях 3-й степени, решение которой дало толчок прогрессу в области алгебры. Тарталья вырос в бедности, и его настоящее имя нам неизвестно. «Тарталья» означает «заика», это прозвище он получил потому, что стал заикаться после того, как мальчиком пережил жестокую картину взятия французами своего родного города Брешии. Тарталья был самоучкой, но его замечательный талант дал ему возможность вступить в 1535 г. в математический диспут с неким Антонио Фиоре, которому Шипионе дель Ферро, профессор математики в Болонье, сообщил найденное им решение уравнения вида х3 + ах = b. Диспут заключался в том, что каждая сторона предлагала противнику решить равное количество задач, однако Фиоре знал ход решения и потому обладал преимуществом. Тем не менее Тарталья решил все 30 задач своего противника, в то время как тот не смог решить ни одной его задачи.
Победа на диспуте принесла Тарталье значительное материальное вознаграждение и славу замечательного математика. После диспута его имя стало известно Кардано, который еще раньше стал заниматься решением уравнений 3-й степени, но не достиг, по-видимому, существенных результатов. Кардано смог уговорить Тарталью сообщить ему правила решения уравнений, пообещав сохранить их в тайне. Вскоре, однако, он нарушил свое обещание, опубликовав в 1545 г. книгу «Великое искусство, или об алгебраических вещах», в которой подробно разбирались решения уравнений 3-й степени. Хотя в книге заслугам Тартальи воздавалось должное, тот воспринял ее публикацию как оскорбление, и между двумя учеными завязалась ожесточенная полемика, в процессе которой были обнародованы некоторые добавочные результаты в решении этой проблемы.
Как бы то ни было, результаты Тартальи дошли до нас через посредство книги Кардано, а книга, которую сам Тарталья, по его утверждениям, собирался опубликовать, так и не увидела. Суть этих результатов сводилась к тому, что для уравнения
х3 + ах = b
решение вычислялось по формуле
Это правило Тартальи известно сегодня как формула Кардано. Кардано в своей книге рассматривал и отрицательные числа, получающиеся при некоторых вычислениях (он называл их «вымышленными»), а также для частных случаев использовал преобразования, сводящие кубическое уравнение к квадратному (результат, принадлежащий на самом деле Луиджи Феррари). Он также заметил, что правило Тартальи непригодно для некоторых значений коэффициентов a и b (так называемый неприводимый случай). Теперь мы знаем, что при этих значениях уравнение 3-й степени имеет три действительных корня, которые получаются как результат сложения комплексных чисел. Эта проблема была решена последним замечательным болонским математиком XVI в. Рафаэлем Бомбелли, который ввел понятия мнимого и комплексного чисел, что и позволило ему решить кубическое уравнение для неприводимого случая. Книга Бомбелли «Алгебра» (1572) в течение ряда столетий служила важным математическим пособием — ею, в частности, пользовались Лейбниц и Эйлер.
В творчестве Тартальи и Кардано можно найти много общего и помимо исследования уравнений 3-й степени. Оба занимались также и проблемами механики, в решении которых ярко проявилась антиаристотелевская направленность их научной мысли. О представлениях Кардано относительно материи, разработанных в его трактате «О тонкости» (1552), уже говорилось выше. Кроме того, важны его рассуждения относительно равновесия на наклонной плоскости; он находит, что для поддержания тела на горизонтальной плоскости не требуется никакой силы, в то время как для поддержания тела на наклонной плоскости необходима сила, равная тяжести тела. Кардано известен как изобретатель ряда механических приспособлений и устройств, в частности ему принадлежит изобретение карданова вала, используемого сегодня повсеместно в автомобилях, и карданова подвеса, нашедшего широкое применение в гироскопической технике.