Ньютон тогда не ответил, но вызов принял. Как следует из исследований Херивела [13, с. 247—253], Ньютон в начале 1680 г. доказал, что в поле силы, подчиняющейся закону обратных квадратов, планета движется по эллиптической орбите. Позднее он сам так рассказывал об этом: «Я нашел, что каков бы ни был закон сил, удерживающих планеты на орбите, площади, описываемые радиусом, проведенным от них к Солнцу, будут пропорциональны временам описания. И... что эти орбиты будут эллипсами, как описал Кеплер, если силы, удерживающие их на орбитах вокруг Солнца, понимаются обратно пропорциональными квадратам их расстояний от Солнца» [14, с. 293].
Однако прошло еще четыре года, прежде чем кто-либо об этом узнал. К 1684 г. вопрос о том, как получить законы Кеплера исходя из общих принципов механики, стал одним из центральных в среде английских ученых. В январе 1684 г. он стал предметом обсуждения на заседании Королевского общества, где присутствовали астроном Галлей, архитектор Рен и Гук. Гук заявил, что он может вывести все законы Кеплера из предположения, что сила притяжения убывает обратно пропорционально квадрату расстояния, но доказательства не представил. Тогда Рен предложил приз — книгу стоимостью в 2 фунта — тому, кто решит эту проблему в течение двух месяцев. Но два месяца прошли, а решение все еще не было найдено. Дело сдвинулось с мертвой точки лишь тогда, когда в августе 1684 г. обратились к Ньютону. По свидетельству Де Муавра, записанного со слов Ньютона, все произошло так: «В 1684 г. доктор Галлей посетил его в Кембридже. Спустя некоторое время после приезда доктор спросил его, какой по его мнению должна быть кривая, которую описывает вокруг Солнца планета, в предположении, что сила притяжения к Солнцу обратно пропорциональна квадрату расстояния от него. Сэр Исаак немедленно ответил, что кривая будет эллипсом. Доктор в возбуждении спросил, откуда ему это известно. Я рассчитал, — ответил тот. Тогда доктор Галлей попросил сейчас же показать расчеты. Сэр Исаак порылся в бумагах, но найти их не смог. Тем не менее он пообещал возобновить расчеты и послать их Галлею» [2, с. 403].
Ньютон сдержал свое обещание: в ноябре того же года Галлей получил небольшой трактат (в нем было всего девять страниц), озаглавленный «О движении тел по орбите» («De motu corporum ingirum»). В нем не только было доказано, что эллиптическая форма орбиты обусловливает закон обратных квадратов для притяжения тела, помещенного в фокусе, но было также намечено доказательство первоначальной задачи, поставленной Гуком в 1680 г.: из закона обратных квадратов следует, что орбита представляет собой коническое сечение, которое является эллипсом, если скорость планеты не превышает некоторой величины. Кроме того, в трактате выводились второй и третий законы Кеплера и рассматривалось движение снаряда в сопротивляющейся среде.
«De motu» открывается двумя определениями и двумя гипотезами. В Определении I Ньютон вводит в механику новое понятие: «Я называю то, посредством чего тело направляется или притягивается к некоторой точке, рассматриваемой как центр, центростремительной силой» [13, с. 277]. Позднее Ньютон объяснил, что назвал силу «центростремительной» (vis centripeta) no аналогии с гюйгенсовским термином «центробежная сила» (vis centrif uga).
Затем следует Определение II, касающееся прямолинейного движения: «Я называю то, посредством чего тело стремится продолжать пребывать в движении по прямой линии, силой тела или врожденной силой».
Гипотеза II расширяет это определение до фундаментального закона: «Под действием одной лишь врожденной силы каждое тело движется по прямой линии бесконечно, если только что-либо этому не препятствует» [13, с. 277].
В трактате сделана попытка вывести движение по орбите как следствие двух сил: врожденной силы, которая поддерживает прямолинейное движение, и центростремительной силы, которая его постоянно изгибает. Чтобы объединить эти две силы, Ньютон использует параллелограмм сил, который введен в трактат как Гипотеза III: «Под действием двух сил одновременно тело в данное время перемещается в то место, куда оно было бы перемещено этими силами, действующими раздельно и одна за другой в течение равных времен» [13, с. 278].
Теорема I рассматривает силу как последовательность дискретных импульсов, производимых в равные промежутки времени. Используя параллелограмм сил и элементарную геометрию треугольников, Ньютон показывает, что площади, заметаемые радиусом-вектором в последовательные равные интервалы, равны. Это утверждение справедливо и в предельном случае, когда треугольники становятся бесконечно малыми и многоугольник приближается к кривой. Таким образом доказывается справедливость первого закона Кеплера для траектории, которую описывает тело под действием одной внешней (центростремительной) силы.