Каков же тогда возраст Земли? Рассматривая постоянные распада природных радиоактивных веществ, мы видим, что все они меньше одной миллиардной в год. Искусственные же радиоактивные материалы, которые мы производим сами, имеют, однако, всевозможные постоянные распада. У некоторых из них постоянные распада очень малы (миллионные доли в год), у других распад происходит очень быстро — например, половина вещества распадается за десятые доли секунды. Найдены всевозможные скорости распада в этих пределах. Однако в природе встречаются только элементы со скоростью распада меньше нескольких биллионных[11] долей в год. Объяснение очень просто: элементы, распадающиеся быстрее, не встречаются в природе потому, что они уже успели распасться[12] за время существования Земли.
Отсюда мы заключаем, что материал, составляющий Землю, существует в его нынешнем состоянии несколько миллиардов лет, во всяком случае не многим более. Естественный радиоактивный элемент с наименьшим временем распада, К40 (скорость распада — одна миллиардная в год), почти израсходовался; его содержание в естественном калий очень невелико (0,12 %). Поэтому «возраст» материала, составляющего нашу Землю, должен несколько превышать миллиард лет, быть может, он в 5 или в 10 раз больше, но не многим более.
Это был знаменательный момент в истории нашего познания мира, когда здесь, на Земле, мы нашли доказательство того, что Земля не существует извечно. Радиоактивные вещества — это только маленькая часть материала Земли. Они встречаются исключительно редко. Но само их существование свидетельствует о каком-то начале.
Что же происходило в этом начальном периоде? Конечно, Земля не могла находиться в состоянии, напоминающем нынешнее. В то время вещество, из которого состоит Земля, должно было находиться в условиях, обеспечивающих образование радиоактивных элементов. Такие условия мы создаём в наших больших ядерных ускорителях. Частицы и атомы должны были обладать огромными энергиями, их плотности достигали колоссальных величин, и сами они сталкивались друг с другом на больших скоростях. Температуры, при которых создаются эти условия, имеют порядок 100 миллионов градусов. У нас есть веские основания полагать, что такие условия существуют в центрах звезд, но не при обычных обстоятельствах, а когда звезды становятся неустойчивыми и взрываются. Взрывающиеся звезды называются новыми, потому что они внезапно появляются на небе и быстро, за несколько месяцев, тускнеют. Они встречаются не так уж редко. С помощью наших гигантских телескопов мы ежегодно можем найти 20 или 30 таких звезд среди 50 000 000 000 звезд Галактики[13]
Итак, мы приходим к заключению, что материал, из которого состоит Земля, должен был подвергаться огромному ускорению и нагреванию (вероятно, во взрывающихся звездах) в период, закончившийся 5—10 миллиардов лет назад. Мы можем считать, что эти процессы обеспечили создание элементов, из которых состоит наше окружение[14]. К этому времени относится образование многих радиоактивных и нерадиоактивных элементов, в том числе тех, которые мы можем сделать в наших ускорителях, а также некоторых других. Но с тех пор радиоактивные вещества с короткими временами распада давно распались и превратились в устойчивые, стабильные, элементы. Немногие долгоживущие естественные радиоактивные вещества — это последние свидетели того богатого событиями времени, когда образовались элементы — те элементы, из которых состоит Земля. Это последние искры, оставшиеся после величественного космического пожара, который 10 миллиардов лет назад создал элементы, окружающие нас на Земле.
Давность событий в истории Земли
Более подробный анализ процесса распада естественных радиоактивных элементов позволяет нам определять давность событий, происходивших значительно позже образования элементов. В большинстве случаев минерал, содержащий естественный радиоактивный элемент, содержит и продукт его распада. Например, в горной породе, содержащей рубидий, находится также и стронций, элемент, в который превращается радиоактивный рубидий. Сравнивая относительные количества обоих элементов в образце, мы можем определить, сколько времени рубидий находился в этой породе, или, другими словами, найти время, прошедшее с момента ее затвердевания. Расчет весьма прост. Каждый год 1,6·10-11 часть рубидия превращается в стронций, и отсюда можно заключить, сколько лет понадобилось, чтобы получилось наблюденное количество стронция.
12
Можно указать интересные исключения из этого правила, которые показывают, как легко ошибиться при неверном подходе. В природе существует некоторое количество быстро распадающихся веществ. Однако все они представляют собой «дочерние продукты» медленно распадающихся элементов. Вот что это значит. Иногда продукт радиоактивного распада сам радиоактивен и превращается в какой-то третий элемент. Такой продукт называется «дочерним».
Если распад первого идет очень медленно, а распад второго, дочернего, быстро, в природе всегда будет наблюдаться быстрый распад, следующий за медленным.
13
Вероятность взрыва обычной звезды, такой, как Солнце, не очень велика. Это случается один раз за несколько миллиардов лет. Последний взрыв в нашем окружении (в радиусе 1000 световых лет) произошел в 1750 г.