Выбрать главу

«…Я хотел бы воспользоваться этим примером, чтобы показать, как часто мы наталкиваемся на факты случайным образом. Я уже давно занимался исследованиями рассеяния альфа-частиц, а д-р Гейгер, работавший в моей лаборатории, изучал это явление во всех деталях. Исследуя тонкие образцы тяжелых металлов, он нашел, что рассеяние. оказывается обычно малым, порядка одного градуса. Однажды Гейгер пришел ко мне и сказал: „Не думаете ли Вы, что молодому Марсдену, которого я учу методике исследований радиоактивности, следовало бы начать небольшую исследовательскую работу?“ Я согласился с ним и сказал: „Почему бы не предложить ему выяснить, могут ли рассеиваться альфа-частицы на большие углы?“ Должен сознаться Вам, что я сам не верил в такую возможность. Действительно, как мы знаем, альфа-частицы — это очень быстрые и массивные частицы с большим запасом энергии, и можно показать, что если бы рассеяние было обусловлено эффектом накопления целого ряда незначительных рассеяний, то вероятность рассеяния альфа-частиц в обратном направлении окажется очень малой. Затем я вспоминаю, что два или три дня спустя Гейгер пришел ко мне очень возбужденным и сказал: „Мы получили несколько альфа-частиц, летящих в обратном направлении…“ Это было самое невероятное событие, когда-либо происходившее в моей жизни. Это было почти столь же невероятно, как если бы при стрельбе 15-дюймовым снарядом по куску бумаги Вас бы ранило рикошетом. Поразмыслив, я понял, что это обратное рассеяние должно происходить в результате одного-единственного столкновения, и когда я произвел вычисления, то увидел, что можно получить эффект такого порядка величины, только если допустить существование системы, в которой большая часть массы атома сосредоточена в маленьком по размеру ядре. Тогда я подумал об атоме с маленьким массивным центром, несущим заряд. Я разработал математический закон, которому должно подчиняться рассеяние, и установил, что число частиц, отклоненных на заданный угол, должно быть пропорционально толщине рассеивающей фольги, квадрату заряда ядра и обратно пропорционально четвертой степени скорости. Эти выводы впоследствии подтвердили Гейгер и Марсден рядом прекрасных опытов»[30].

После этих опытов и целого ряда последующих стало совершенно ясно, что атом состоит из положительно заряженного, маленького, но массивного ядра (в котором сосредоточена основная масса атома), окруженного отрицательно заряженными электронами, гораздо более легкими, чем ядро. Истинный размер ядра чрезвычайно мал. Его диаметр лежит между 10-13 и 10-12 см, в зависимости от рода атома, т. е. примерно в 10 000 раз меньше диаметра самого атома; однако ядро очень тяжелое, так как в нем сосредоточена почти вся масса атома. Резерфорд и другие физики, в частности Мозли, определили число электронов в каждом атоме и положительный заряд атомного ядра. Поскольку сам атом электрически нейтрален, отрицательно заряженные электроны должны уравновешивать заряд положительно заряженного ядра. Следовательно, число электронов всегда должно равняться заряду ядра, выраженному в единицах заряда электрона. Это число характерно для атомов каждого рода. Водород, например, имеет один электрон и один положительный заряд в ядре, гелий — два электрона, литий — три и т. д., вплоть до урана с его 92 электронами и ядром, несущими 92 единицы положительного заряда. Это число называется атомным номером Z. Каждый элемент имеет свой характерный атомный номер Z, указывающий величину положительного заряда ядра и число электронов в атоме.

После этого открытия качественная разница между 92 элементами свелась к количественной. Атомы одного элемента отличаются от атомов другого только числом электронов в них, определяющим также, сколько положительных единиц заряда имеет ядро.

Можно расположить атомы в определенном порядке в соответствии с их атомными номерами Z, причем каждый номер от 1 до 92 (кроме технеция (43) и прометия (61)) отвечает элементу, находимому в природе. Ниже приведены атомные номера Z для наиболее важных природных элементов.

Существуют также и искусственно создаваемые элементы — «трансурановые», которые имеют больше 92 электронов. Они имеют короткое время жизни и не встречаются в природе при обычных условиях.

Важнейшие проблемы строения атома

вернуться

30

Э. Резерфорд, Развитие теории строения атома, Макмиллан, Нью-Йорк, 1940.