Выбрать главу

Этот результат характерен не только для тех случаев, когда при исследовании электронных орбит применяется свет. В самом общем случае все результаты измерений, на основе которых должно быть вынесено решение о волновой или корпускулярной природе электрона (или протона, или любой другой частицы), обладают тем же свойством. Если произвести такое измерение, объект полностью изменит свое состояние вследствие самого этого действия, и полученный результат будет относиться не к исходному состоянию, а к тому, в котором оказался объект благодаря измерению. Однако это последнее состояние имеет столь большую энергию, что больше не проявляет волновых свойств.

Квантовая природа, или зернистость, света и всех других средств наблюдения не позволяет отличить волновую картину от корпускулярной. Она не дает возможности разделить орбиту на последовательность перемещений, независимо от того, идет ли речь о смещениях частиц или о волновых колебаниях. Если мы насильственно подразделим интересующий нас процесс и попытаемся посмотреть на волну более пристально, чтобы увидеть, где «на самом деле» находится электрон, то мы где-то обнаружим его как реальную частицу, но разрушим при этом неуловимую индивидуальность квантового состояния. Волновая его природа исчезнет, а с нею вместе исчезнут и характерные свойства атома. В конце концов, ведь именно эта волновая природа обусловливает типичные свойства квантовых состояний: простую форму, возвращение к первоначальной форме после возмущения и все другие специфические свойства атомов.

Утверждение о волновой природе электрона сделано на основании представления о неделимости квантовых состояний. Весьма важное новое понимание квантовой физики состоит в признании того, что индивидуальные квантовые состояния образуют неделимое целое, которое существует только до тех. пор, пока на него не воздействуют проникающие средства наблюдения. В своем квантовом состоянии электрон не является ни волной, ни частицей в старом понимании. Квантовое состояние — это форма существования предоставленного самому себе электрона в условиях, характеризующихся малой энергией. Он является некоторой определенной индивидуальностью, конфигурация которой отвечает волновому движению со всеми его особыми свойствами, распространяющимися на ограниченную область пространства. Любая попытка увидеть детали этой волны путем прямого наблюдения неизбежно разрушит ее, так как средства наблюдения сообщат системе столь большое количество энергии, что условие малости последней перестанет быть справедливым.

На данной стадии нашего обсуждения становится вполне естественным вывод, что предсказание атомных явлений иногда должно носить лишь вероятностный характер. В качестве примера этого положения попытаемся предсказать точное место, в которое должен попасть электрон после разрушения его квантового состояния под действием излучения большой энергии. Если квантовое состояние исследовалось тонким пучком света, то можно сказать, что электрон будет находиться где-то в области соответствующей ему волны, но нельзя точно предсказать его место. В таком случае можно делать только вероятностные предсказания, например, можно сказать, что с наибольшей вероятностью электрон будет находиться там, где соответствующая ему волна обладает наибольшей интенсивностью[38].

Квантовая механика дала нам неожиданный, но чудесный ответ на очень важный вопрос. С одной стороны, атомы суть малые частицы вещества; считается, что они неделимы и наделены всеми характерными свойствами вещества, частицами которого они являются. С другой стороны, атомы имеют какую-то определенную структуру; они состоят из электронов и ядер, которые обязательно должны совершать механические движения, похожие на движения, совершаемые планетами вокруг Солнца. Следовательно, трудно себе представить, чтобы атомы обладали указанными выше свойствами.

Ответ на этот вопрос был получен после открытия квантовых состояний, которые до известной степени удовлетворяют первому требованию. Волновые свойства наделяют атом свойствами тождественности, целостности и специфичности, но область, в которой сохраняются эти характеристики, ограничена. Только если атомы подвержены воздействию, меньшему некоего характеристического порога, они сохранят свою тождественность и свои специфические свойства. При более сильном воздействии они теряют свои типично квантовые свойства и их поведение становится нетипичным, а именно таким, какого следовало бы ожидать, исходя из механических свойств их внутренней структуры.

вернуться

38

Невозможность измерения некоторых величин, относящихся к атомным частицам, служит основой знаменитого принципа неопределенности Гейзенберга. Согласно этому принципу, невозможно вполне точно определить одновременно и положение и скорость электрона. Конечно, если бы это было возможно, то электрон следовало бы считать частицей, а не волной. Принцип Гейзенберга утверждает, что невозможно с достаточной степенью точности произвести опыт, позволяющий решить, обладает ли электрон волновой или корпускулярной природой. Этот принцип выражает отрицательное утверждение, что некоторые измерения невозможны. Однако здесь следует ясно понять весьма важное положение, а именно то, что невозможность некоторых измерений есть нечто большее, чем просто техническое ограничение, которое когда-нибудь удастся преодолеть, воспользовавшись более хитроумными средствами и способами измерения. Если бы такие измерения можно было выполнить, то не пришлось бы говорить о существовании волновых и корпускулярных свойств, так как измерения исключили бы одну из этих возможностей, как ошибочную. Результаты множества измерений и наблюдений показывают, что наши объекты обладают как волновыми, так и корпускулярными свойствами. Поэтому ограничения Гейзенберга должны иметь более глубокий смысл: они с необходимостью вытекают из двойственной природы атомных объектов. Если бы эти ограничения оказались несправедливыми, то все наше истолкование огромной области атомных явлений превратилось бы только в длинную цепь ошибок и в основе всего поразительного успеха квантовой теории лежали бы случайные совпадения.