Выбрать главу

Многие насекомые проходят через личиночную стадию, которая занимает значительную часть их жизненного цикла. У этих личинок — например, у гусениц бабочек — в процессе их превращения во взрослую форму происходит глубокая перестройка всего организма (окукливание).

У некоторых насекомых личиночная стадия занимает почти весь их жизненный цикл, и короткоживущие взрослые формы у поденок, например, вообще не питаются и практически представляют собой крылатые органы воспроизведения.

Принято считать, что насекомые развились из организмов, родственных кольчатым червям, и что из {35} современных форм насекомых ближе всего к их эволюционному прототипу стоят те, которые обладают наиболее «обобщенным» строением, в частности прямокрылые (Orthoptera), включающие тараканов и кузнечиков*. Во времена расцвета эволюционной биологии считалось, что энтомологи обязаны как можно дальше проследить все эволюционные линии насекомых, но почти все современные энтомологи оставили эти изыскания, в сущности скучные и бесплодные: какое, собственно, имеет значение, произошло ли данное насекомое от этих предков или от других?

Изучение насекомых затрагивает множество интересных и важных биологических проблем, связанных с наследственностью, развитием, поведением и с действием гормонов. Например, газовый обмен у них осуществляется через очень тонкие воздушные трубочки, трахеи, ведущие от поверхности тела прямо к внутренним органам. Врожденные физические ограничения дыхательной системы насекомых в сочетании с необходимостью линять ставят предел их размерам, причем гораздо более жестко, чем, например, у ракообразных. Поэтому заселение мира огромными насекомыми-фашистами представляет собой одну из самых нелепых идей среди всех мрачных нелепостей научной фантастики; более того, вероятность развития из насекомых какой бы то ни было другой формы животных можно отбросить как бесконечно малую. Насекомые — это специализированный конечной продукт эволюции. Утверждалось, что внутри этой группы новые виды возникают едва ли не быстрее, чем их удается опознать и дать им наименование. Это трудно проверить, потому что современные энтомологи больше не предаются чистой систематизации с прежним пылом. Но вот что можно сказать совершенно твердо: живущие и ископаемые виды насекомых описаны и наименованы отнюдь не все, хотя их известно уже около миллиона. И мы можем быть также уверены, что изощренные формы приспособления, обеспечивающие насекомым их успех, в то же время закрыли перед ними дверь новых эволюционных возможностей.

Глава 3 Биологическая наследственность, нуклеиновые кислоты, генетический код

В повседневной жизни мы наследуем (или — что гораздо чаще — не наследуем) богатство, имения, титулы и всякую собственность. В биологической же наследственности мы наследуем химически закодированное сообщение, закодированный набор инструкций, чрезвычайно точно определяющий тот путь, по которому пойдет развитие следующего поколения организмов. Молекулы, в которых закодирована генетическая информация, — это гигантские молекулы дезоксирибонуклеиновой кислоты (сокращенно ДНК). Способность молекул нуклеиновой кислоты нести информацию определяется практически неисчерпаемыми возможностями перестановок и комбинаций тех четырех различных типов нуклеотидов, из которых слагается такая молекула (см. гл. 10 и 12). Эта переносящая информацию система похожа на азбуку Морзе, но только с четырьмя различными символами вместо привычных нам двух — точки и тире. Нуклеиновые кислоты переносятся в хромосомах, главную часть которых они и составляют и в которых нейтрализованы белками, имеющими щелочные свойства. Хромосомы — это те материальные объекты, которые через сперматозоиды и яйцеклетки передаются от одного поколения другому; хромосома неоднородна по длине, и каждое особое расположение нуклеотидов, которое отличает один ее отрезок от остальных, носит название ген. Хромосому можно увидеть в обычный оптический микроскоп, а особенности ее строения, которые и представляют собой гены, в последнее время удается обнаруживать при помощи электронных микроскопов с достаточно высокой разрешающей способностью. Следует, однако, подчеркнуть, что если бы микроскоп так и не был изобретен и биолог не {37} располагал бы никакими увеличительными приборами, мы все равно установили бы существование хромосом и генов путем рассуждений, сходных с теми, которые в свое время заставили нас поверить в реальность молекул и атомов; правда, на сей раз рассуждения были бы чисто генетическими, т. е. строились бы на результатах опытов по скрещиванию. Собственно, только благодаря этим опытам мы и знаем о существовании большинства генов. Некоторые пуристы-генетики старой школы, стараясь доказать самостоятельность генетики и как-то защититься от претензий молекулярной биологии, любят подчеркивать, насколько глубоко и точно смогли бы они открывать и исследовать материальную основу наследственности, вовсе не прибегая к помощи физических и химических методов анализа. Более того, генетики поколения Уильяма Бейтсона (1861–1926), так много сделавшие для пропаганды и подтверждения менделевских законов наследственности, нередко весьма раздражительно относились ко всем тогдашним разговорам о хромосомах. Приведенный ниже краткий очерк менделевской теории в основе своей вполне совпадает со взглядами Бейтсона, хотя и несколько переделан, с тем чтобы ввести в рассказ хромосомы. Хромосомы оплодотворенной яйцеклетки составляют пары (так называемое диплоидное состояние), причем одна хромосома в каждой паре происходит от одного родителя, а вторая — от другого. Поскольку все обычные соматические клетки тела возникают путем последовательного симметричного деления, копии этих пар хромосом представлены во всех клетках тела. Однако в процессе образования гамет (или репродуктивных клеток, т. е. сперматозоидов и яйцеклеток) хромосомы разделяются таким образом, что в гамету попадает только одна хромосома из каждой пары, поэтому число хромосом в каждой гамете составляет половину от их числа в обычной клетке тела — так называемое гаплоидное состояние. Когда происходит оплодотворение, т. е. слияние гамет, происшедших от особей разного пола, диплоидное число хромосом восстанавливается и все хромосомы соединяются в пары с соответствующим числом хромосом второго родителя. Следует подчеркнуть, что после разделения пар хромосомы распределяются по {38} гаметам совершенно случайным образом: абсолютно невозможно заранее предсказать, какая из хромосом данной пары попадет в ту или иную гамету, и вероятность того, что данная хромосома попадет в данную гамету, точно равна вероятности того, что в эту гамету попадет парная ей хромосома. Оплодотворение с генетической точки зрения — также процесс, полностью подчиняющийся законам случайности, однако механизм деления и соединения хромосом обеспечивает определенную статистическую правильность распределения наследуемых черт. Эта правильность воплощена в знаменитом менделевском законе расщепления (3:1, 9:3:3:1), краткое изложение которого можно найти в любом учебнике генетики или биологии. И только в начале нашего столетия биологи начали отдавать себе отчет, что наблюдаемое по» ведение хромосом совершенно точно совпадает с тем, которого следовало бы ожидать от любого материального агента, передающего менделевские «наследственные факторы». Хромосомы соответствуют группам сцепления, т. е. группам генетических детерминантов, которые наследуются все вместе (если вообще наследуются), и после блестящих исследований Томаса Ханта Моргана и его генетической школы в Колумбийском университете, с очевидностью показавших, что хромосомы по длине неоднородны, материальная основа самих «наследственных факторов» получила название «гены». Благодаря школе Моргана был открыт новый и чрезвычайно важный источник мелких генетических отклонений, в огромной степени расширяющий комбинаторные вариации генов, которые можно найти у различных особей, принадлежащих к одному виду*. Это перекрестный обмен (кроссинговер) — процесс, при котором хромосомы, входящие в пару, обмениваются наследственным материалом, причем обмен этот сопровождается разрушением обычных групп сцепления. И точно так же, как существование сцепления можно считать ограничением принципа свободного распределения генов, кроссинговер можно считать ограничением принципа сцепления. {39} Перекрестный обмен, свободное распределение генов и случайные рекомбинации гамет и создают тот неимоверно широкий спектр генетических различий, которым характеризуются организмы каждого отдельного вида.