Итак, поскольку ионизация слоев непосредственно связана с влиянием Солнца, от его активности зависит нарушение радиосвязи. На Землю может быть извергнут мощный поток корпускулярного излучения, что является причиной магнитной, а затем и ионосферной бури. Эти бури приводят порой к полному прекращению радиосвязи. Известно, что активность Солнца изменяется со средним периодом 11,3 г. Принята и количественная характеристика этой активности — число Вольфа ( W), связанное с числом пятен на солнечном диске. Но активность Солнца — причина сверхглобальная, она одинаково влияет практически повсеместно, и выделять Бермудский треугольник как особый район не приходится.
Далее вопрос о прохождении средних и коротких радиоволн мы рассмотрим с точки зрения существования радиосвязи между Москвой и нашим научно-исследовательским судном. А расстояние это немалое! Именно оно-то и является одной из причин плохого качества радиосвязи между судном и Москвой. Что же касается радиосвязи судов, плавающих в Бермудском треугольнике, с ближайшим континентом (Северная Америка), то особенных нареканий нет.
На некоторых судах и прогулочных яхтах, плавающих в Бермудском треугольнике, имеется радиоаппаратура, захватывающая ультракоротковолновой диапазон. Как известно, ультракороткие волны распространяются в тропосфере. При определенных метеорологических условиях появляется возможность достаточно дальней связи.
На УКВ за счет увеличения искривления (рефракции) траектория радиолуча отклоняется в сторону Земли (положительная рефракция). Очень сильная рефракция приводит даже к образованию так называемой сверхрефракции, т. е. волноводному распространению радиолуча на весьма значительные расстояния. Известны случаи установления УКВ-связи на расстояние в 1000 км и даже больше.
Для проведения дальней связи необходимы определенные условия, определенное состояние тропосферы, обеспечивающее увеличение рефракции. Критерием такого состояния является величина так называемого вертикального индекса преломления ( N/Z), где N —показатель преломления; Z —высота показателя преломления, пропорционального изменению давления, влажности и обратно пропорционального изменению температуры.
Так, увеличению рефракции способствует антициклональная погода, когда у поверхности Земли наблюдается повышенное давление (d=760 мм). Причем при одинаковом давлении эффект выше при более низкой температуре воздуха. Максимум суточного хода температуры обычно наблюдается в 15 ч местного времени, а минимум — перед восходом солнца. Следовательно, если не возникнет каких-либо особых условий, ночные и предутренние часы будут наиболее благоприятны для проведения сеансов дальней радиосвязи. Наиболее резкое изменение параметров тропосферы происходит при перемещении так называемых атмосферных фронтов [102].
На акватории Бермудского треугольника осенью и зимой антициклональная погода — редкость, а вот неустойчивая — обычное дело. Поэтому на УКВ связь нередко нарушается, чередуясь с небольшими промежутками, когда отмечается хорошее прохождение ультракоротких радиоволн.
«Море дьявола»
К юго-востоку от Японии в Тихом океане располагается район, конкурирующий с Бермудским треугольником.
Писатель Л. Почивалов в статье «Есть ли тайны в Бермудском треугольнике?», напечатанной в одном из номеров «Литературной газеты» за 1983 г., писал: «Я вспоминаю свой двенадцатилетней давности рейс на „Витязе“ <…> Там тоже есть свой „треугольник“ — Филиппинский, — проклятое моряками место. Я читал, что он будто бы является повторением Бермудского. Только в Атлантике его называют „Дьявольским треугольником“, а в Тихом — „Морем дьявола“. Расположено оно между Японией, о-вом Гуам и северной частью Филиппинских островов. Здесь внезапно начинаются бури и мертвые зыби, которые поглотили немало жертв. Море это зовется „кладбищем“ Тихого океана. За несколько дней до нашего появления в этом районе отправился на дно как раз на трассе „Витязя“ большой японский сухогруз…» [103]
Действительно, за последние 10 лет на акватории этого «Моря дьявола» погибло 24 судна. Наиболее трагичной оказалась зима 1980–1981 гг., когда в течение только 8 дней погибло шесть судов. После этих катастроф японское правительство разрешило создать специальную комиссию и выделило 2,5 млн долларов на исследования. По рекомендации комиссии в «Море дьявола» установили метеорологические буи для сбора информации о погодных условиях и состоянии океана.
Анализ обстоятельств гибели 24 судов, о которых только что упоминалось, не дает практически никакой пищи, чтобы объяснить катастрофы таинственными причинами. Во всяком случае, причины гибели 21 судна, из которых большинство балкеры, известны достаточно точно. Двенадцать из них переломились, не выдержав штормовых волн, девять затонули из-за смещения груза во время жестоких штормов, и только три пропали бесследно.
Как видим, главный виновник гибели судов — штормы. Особенно опасны сильные тропические циклоны — тайфуны, зарождающиеся в различных районах западной части Тихого океана, в Южно-Китайском море, у Марианских и Филиппинских островов. Траектории большинства из них проходят через «Море дьявола».
Еще известный английский мореплаватель Уильям Дампир в своей книге «Путешествие вокруг света» (1697 г.) [104], дав подробное описание тропических ураганов и тайфунов, правильно подметил, что разница между ураганом Вест-Индии и тихоокеанским тайфуном вод заключается только в названии. Однако в связи с тем, что теплая вода в западной части Тихого океана, где рождаются тайфуны, занимает более обширные пространства, чем в Атлантике, тайфуны, как правило, крупнее и интенсивнее ураганов.
Развитый тайфун представляет собой область пониженного давления с исключительно большими горизонтальными градиентами, вызывающими внутри тайфуна очень сильный ветер. Кстати, по-китайски тайфун и означает «большой ветер». Огромные скорости ветра в тайфунах представляют серьезную опасность для мореплавания и авиации. Атмосферное давление в центре тайфунов в отдельных случаях понижается до 880–890 мбар. Так, в тайфуне «Нэнси», зарегистрированном в сентябре 1961 г., давление в центре составляло 885 мбар. Скорость ветра в этом тайфуне была равна 83 м/с. Впрочем, предельную скорость ветра в тайфунах определить не удается, поскольку приборы для измерения скорости ветра — анемометры — выходят из строя.
Схема ветров тайфуна
Схема ветров тайфуна выглядит примерно так, как это показано на рисунке.
Надо сказать, что характер волнения в центре тайфуна наиболее опасен для судов, хотя внешние признаки — отсутствие ветра, почти безоблачное небо с легкой дымкой перистых облаков — действуют успокаивающе. В «глазе бури», расположенном вблизи берегов, мореплаватели нередко наблюдали тучи насекомых и множество птиц, занесенных в ловушку сильными ветрами.
В областях тайфуна, граничащих с пространством хорошей погоды, особенно в его передней половине, где ветер может быть и слабым и свежим, наблюдается моросящий дождь. С усилением ветра он переходит в сплошной ливень. Сила ветров увеличивается от периферии тайфуна по направлению к «глазу бури» в соответствии с увеличивающейся крутизной градиента давления.
Часто, как показывают исследования, центр тайфуна не совпадает с центром ветровой циркуляции, смещаясь относительно его до 20 миль.
Строение развитого тайфуна
Волнение в зоне тайфуна, впрочем, как и любого тропического циклона, переносится судами значительно тяжелее, чем волнение при штормах умеренных широт. Дело в том, что ветер в высоких и умеренных широтах обычно сохраняет свое направление на значительной акватории, тогда как в движущемся тайфуне он непрерывно меняет свое направление. Поэтому в умеренных и высоких широтах создаются сравнительно правильные волны, идущие с ветром, и судно может к ним приспособиться, а в тропических циклонах одновременно образуются волны, не совпадающие в данный момент с направлением ветра.