Выбрать главу

Определив соответствующее фазовое пространство, мы должны понять динамику: каким образом естественный поток воды под воздействием гравитации влияет на возможную форму поверхности. Здесь возникает простой принцип, сразу решающий всю задачу: вода ведет себя так, чтобы сделать свою полную энергию минимальной. Если привести воду к какому-либо определенному состоянию вроде той горки, а потом отпустить, ее поверхность будет опускаться по «энергетическому градиенту», пока не придет к минимальной энергии. Затем (после нескольких всплесков, которые постепенно стихнут из-за силы трения) она будет оставаться в этом состоянии с наименьшей энергией.

Под энергией в данном случае подразумевается «потенциальная энергия», зависящая от гравитации. Потенциальная энергия массы воды равна ее высоте над некоторым произвольным уровнем, помноженной на соответствующую ей массу. Допустим, поверхность воды не плоская. Тогда одни ее участки будут выше других, и мы сможем переместить воду с более высоких участков на низкие, разравнивая бугорки и заполняя углубления. Сделаем это, и вода будет двигаться вниз, то есть ее энергия уменьшится. Отсюда вывод: если поверхность отлична от плоской, значит, энергия не минимальна. Иначе говоря, минимальное значение энергии достигается лишь при условии плоской поверхности.

Другой пример – это мыльный пузырь. Почему он круглый? Ответить на этот вопрос можно, сравнив его реальную круглую форму и гипотетическую некруглую. В чем между ними различие? Кроме того, что один круглый, а другой нет? Согласно греческой легенде, Дидоне предложили участок земли (в северной Африке) такой площади, какой она могла обложить бычьей шкурой. Она разрезала шкуру на длинную и тонкую полосу и выложила ее кругом. Позже на том месте был основан Карфаген. Почему она выбрала круг? Потому что из всех фигур с равным периметром именно круг обладает наибольшей площадью. А сфера точно так же имеет наибольший объем среди фигур с равной площадью поверхности. Или, другими словами, это фигура с наименьшей площадью поверхности при равном объеме. Пузырь имеет ограниченный объем воздуха, а площадь поверхности дает мыльной пленке энергию для растяжения этой поверхности. В пространстве всех возможных форм пузырей наименьшей энергией обладает сфера. У других форм энергия больше, и поэтому все они исключаются.

Вероятно, вам кажется, что пузыри – это не столь важная проблема. Но аналогичный принцип объясняет, почему Круглый мир (планета, а не вселенная, хотя, возможно, и вселенная тоже), собственно, круглый. Будучи когда-то расплавленным камнем, он принял сферическую форму, так как она имела наименьшую энергию. По той же причине тяжелые материалы, такие как железо, осели внутрь ядра, а более легкие, такие как континенты и воздух, всплыли наружу. На самом деле Круглый мир – это не совсем сфера, ведь он вращается, в результате чего центробежные силы привели к утолщению в районе экватора. Величина этого утолщения составляет всего треть процента, и для жидкой массы, вращающейся с такой же скоростью, с какой вращалась Земля, когда начала затвердевать, эта утолщенная форма обладает наименьшей энергией.

Для основной идеи настоящей книги физика не столь важна, как применение различных фазовых пространств с позиции «А что, если…». Обсуждая форму воды в бассейне, мы совсем проигнорировали ту плоскую поверхность, которую и пытались объяснить. Все наши аргументы основывались на неплоских поверхностях, горках, углублениях и гипотетических перемещениях воды с одного места на другое. Почти во всех рассуждениях мы подразумевали то, чего на самом деле произойти не может. Лишь в самом конце, исключив все неплоские поверхности, мы обнаружили, что осталась всего одна возможность, которой вода и пользуется в действительности. То же касается и мыльных пузырей.

На первый взгляд такой способ изучения физики кажется слишком косвенным. Он исходит из того, что для понимания реального мира его нужно игнорировать и акцентировать внимание на альтернативных нереальных мирах. Затем находить некий принцип (в конкретном случае им послужила минимальная энергия), который позволяет исключить все нереальные миры и рассматривать то, что осталось. Не легче ли сразу начать с реального мира и сосредоточиться лишь на нем? Нет, не легче. Как мы уже выяснили, реальный мир слишком ограничен, чтобы давать убедительные доказательства. От него можно получить лишь объяснение вроде «мир таков, каков он есть, и больше тут не о чем говорить». Однако если совершить воображаемый скачок к осмыслению нереальных миров, их можно сравнить с реальным и найти принцип, выделяющий его среди остальных. Тогда вы найдете ответ на вопрос «почему мир таков, каков он есть, а не какой-нибудь другой?».