Выбрать главу

Доход таксиста зависит от нескольких обстоятельств. В лучшие дни, когда у него много пассажиров, он зарабатывает хорошо. В плохие дни – нет. Следовательно, рациональный таксист должен дольше работать в хорошие дни и пораньше заканчивать в плохие. Однако исследование работы нью-йоркских таксистов, проведенной Колином Кэмерером, дало совершенно противоположные результаты. Похоже, таксисты устанавливают для себя дневную норму и прекращают работу, как только достигают нужной отметки. Поэтому они меньше работают в хорошие дни и больше – в плохие. Если бы они работали одинаковое количество часов каждый день, то могли бы увеличить свой доход на 8 %, не увеличивая средней продолжительности рабочего дня. А если бы работали дольше в хорошие дни и меньше в плохие, то их доход вырос бы на 15 %. Но у них не столь хорошо развита интуиция для выбора экономического фазового пространства, чтобы так поступать. Им, как и многим другим людям, свойственно придавать слишком большое значение настоящему и мало заботиться о будущем.

Насыщена фазовыми пространствами и биология. Первым широкое распространение получило ДНК-пространство. Связанное с каждым живым организмом, оно является его геномом, цепочкой химических молекул, называющихся ДНК. Молекула ДНК имеет форму двойной спирали, то есть представляет собой две спирали, закрученные вокруг общего ядра. Каждая спираль состоит из цепочек «оснований», или «нуклеотидов», которые могут быть четырех видов: цитозин, гуанин, аденин, тимин. Как правило, они обозначаются буквами Ц, Г, А и Т, соответственно. Последовательности двух цепочек комплеменарны: если Ц оказывается в одной спирали, то во второй обязательно будет Г, и то же самое с А и Т. То есть ДНК содержит две копии последовательностей, так сказать, одну положительную и одну отрицательную. Говоря абстрактно, геном можно представить последовательностью этих четырех букв типа ААТГГЦЦТЦАГ… которая может быть достаточно длинной. Геном человека, к примеру, содержит порядка трех миллиардов букв.

Фазовое пространство для геномов, или ДНК-пространство, состоит из всех возможных последовательностей заданной длины. Если говорить о человеке, то ДНК-пространство будет включать в себя все возможные последовательности из трех миллиардов букв Ц, Г, А и Т. Насколько оно велико? Выражаясь математическим языком и по аналогии со случаем с машинами на парковке, ответ таков: 4×4×4 × … ×4, с тремя миллиардами четверок. То есть 43000000000. Это число гораздо больше того 70-значного, что мы получили в задаче о парковке. И гораздо больше количества стандартных книг в Б-пространстве. В нем около 1 800 000 000 цифр. Если вы запишете его, помещая на каждой странице по 3000 цифр, вам понадобится тетрадь с 600 000 листами, чтобы все это вместить.

Представление о ДНК-пространстве весьма полезно для генетиков, занимающихся изучением возможных изменений в последовательностях ДНК, таких как «точечные мутации», при которых меняется всего одна буква кода, скажем, в результате ошибки при копировании. Или воздействия высокоэнергетического космического луча. В частности, вирусы мутируют так стремительно, что нет смысла говорить о зараженных особях как о чем-то постоянном. Вместо этого биологи называют их квазивидами и представляют их как группы родственных последовательностей в ДНК-пространстве. Эти группы по прошествии времени перемещаются, но держатся вместе, что позволяет вирусу сохранить свою индивидуальность.

За всю историю человечества жило не более десяти миллиардов людей – всего лишь 11-значное число. Это неимоверно крошечная часть от всех тех возможностей. То есть люди использовали лишь крупинку ДНК-пространства, как и книги использовали лишь крупинку Б-пространства. Разумеется, самые интересные вопросы не столь просты. Большинство буквенных последовательностей не складывается в книгу, начиненную смыслом, а большинство цепочек ДНК не подходят для жизнеспособного организма, не говоря уже о человеке.

Вот мы и подошли к критической точке фазовых пространств. В физике разумно допускать, что имеющее смысл фазовое пространство можно «предопределить», прежде чем задаваться вопросом, насколько оно отвечает системе. В воображаемом фазовом пространстве мы можем представить себе любую расстановку небесных тел в Солнечной системе. У нас нет технической возможности, чтобы это осуществить, но представить такое нам не составляет труда, к тому же у нас нет физических причин, чтобы исключать какую-либо расстановку из нашего рассмотрения.