Далее необходимо отметить, что нейроны крайне редко бывают в состоянии покоя: в голове постоянно роятся сотни идей. Мысли возникают, куда-то уплывают и гаснут. Еще раз напомню, процессы мышления очень похожи на работу вычислительных машин. Те же формы импульсов, аналогичные пороги сравнения, и даже возможности изменения этих границ.
И еще один интересный момент: как показывает и анализ ЭЭГ, и работы ЭВМ, в обоих случаях происходит сравнение баз исходных данных и данных, полученных извне. Например, в жизни каждого из пас такими данными являются наши навыки, знания и умения.
В ЭВМ механизм принятия решения работает аналогичным образом: на одной шине по определенному адресу выставляются данные, условно говоря, работы здорового сердца, печени, почек, а на другой шине — данные, полученные от пациента. Загружается программа управления. А затем производится простое сравнение баз данных и компьютер выдает ответ: либо «здоров», либо «болен», третьего не дано.
Читатель скажет, что все это очень интересно и занимательно, но мне-то, простите, до всего этого какое дело?
К счастью, внедряются новые компьютерные технологии и в нашу жизнь: достаточно на руки и на ноги надеть зажимы и подключиться к компьютеру, как на экране через одну минуту будет подробная характеристика состояния здоровья. Да и прогноз развития общества, и даже бытовой техники показывает, что, не поняв вышеизложенный механизм, бывает очень трудно, а порой и невозможно научиться пользоваться печью СВЧ, стиральной машиной с программным управлением, компьютером и, уж тем более, в дальнейшем принимать правильные решения.
И последнее наблюдение: компьютеру последнего поколения, как и мозгу, все равно, чем руководить и какое принимать решение — от управления космическими полетами до конвейера автомобильного завода. Механизм принятия решения остается одним и тем же.
Наши интеллектуальные возможности
Продолжая проводить аналогии между ЭВМ и мозгом человека, следует заметить, что обе эти системы обладают двумя очень важными параметрами: тактовой скоростью (количеством операций в секунду) и объемом памяти. Про механизм и виды памяти я рассказывал в своей книге «Мозг и активное долголетие». Сейчас же поговорим о таком важном параметре, как скорости протекания вычислительных процессов в момент принятия решения.
На одной международной конференции, «Наука о сознании и мозге на рубеже веков», мне довелось услышать несколько докладов на тему «Исследования предельных возможностей головного мозга». В докладах ученых было много новой и интересной информации. Надо сказать, что почти все доклады отличала одна особенность: они были теоретическими и совсем оторваны от жизни, либо направлены на лечение сложнейших заболеваний, типа шизофрении. Поэтому у нас и возникла идея поделиться с читателями своими практическими наработками, которые нам с коллегами помогают уже много лет.
В книге впервые опубликованы результаты исследований предельных возможностей головного мозга, проводимые в одном оборонном НИИ. Например, мы выдвинули и обосновали гипотезу о том, что предельная частота работы головного мозга равна 100 МГц (сто миллионов колебаний, или операций, в секунду). Наши ученые много лет занимались разработкой быстродействующих микро-ЭВМ и однажды заметили, что, достигнув частоты 100 МГц, на которой тогда работали наши системы, мозг достиг предела своих возможностей. Глаз еще фиксировал процессы на этой частоте, наблюдаемые на экране осциллографа, а мозг уже не мог выдавать достоверный результат работы. Это можно условно сравнить с преодолением самолетом скорости звука: чтобы звук обогнать, его необходимо для начала догнать. То же самое происходило и у нас: чтобы понять мысль, ее для начала надо было догнать, зафиксировать и только потом можно анализировать.
Мы также обратили внимание на то, что вычислительные машины типа Кассандра, с которыми играл в шахматы гроссмейстер Гарри Каспаров, работали на той же частоте. И результаты матча были примерно одинаковы, т. е. возможности человека и машины принимать решение на этой тактовой (основной) частоте, были равны. Поэтому мы и выдвинули предположение, что предельные возможности мозга определяются именно этой частотой.
Зная механизм контроля, мы решили расширить свои эксперименты и провести проверку этого параметра у других людей. Для этого на экране осциллографа пробегала тактовая частота определенной формы (меандр: 0,1,0,1 и т. д.). По условию эксперимента необходимо было из миллионов импульсов зрительно выделить и зафиксировать только один, который не вписывался в закон о меандре.