Выбрать главу

На основе результатов Паули голландские физики Сэмюэл Абрахам Гаудсмит и Джордж Юджин Уленбек определили понятие спина электрона. Продолжая аналогию с планетарными системами, они указали, что электрон может вращаться вокруг себя, и это вращение можно измерить. Кроме того, Гаудсмит и Уленбек увидели, что для объяснения двойных линий спектра щелочных металлов требовалось, чтобы соответствующее квантовое число принимало только значения +1/2 и -1/2 и измерялось в тех же единицах, что и редуцированная постоянная Планка % Так воедино были связаны полуцелые числа, модель каркаса атома, принцип Паули и результаты экспериментов. Кроме того, Гейзенберг и Йордан показали, что учет спина электрона в квантовой механике позволял однозначно разрешить эффект Зеемана.

Однако как представить себе электрон, вращающийся вокруг себя? Если электрон подобен точке, то как понимать вращение точки вокруг себя? Если же электрон имеет размер, то скорость точки на экваторе электрона превысит скорость света. Также возникает вопрос, почему электрон не взрывается под действием сил отталкивания между его частями. Аналогии с классической физикой приводили и к другим проблемам подобного рода. Следовало предположить, что спин – это еще одно свойство электрона, подобное его массе, электрическому заряду или магнитному моменту Гейзенберг смог прояснить одно интересное свойство атома гелия. Анализ его спектра выявил существование двух разных последовательностей линий спектра. Ученый посчитал, что, возможно, существуют две разновидности гелия, которые назвал парагелием и ортогелием. Расскажем, как рассуждал Гейзенберг. Сначала он заметил, что электроны неразличимы между собой. Следовательно, волновая функция множества идентичных электронов должна обладать какими-либо свойствами симметрии, отражающими эту особенность электронов.

Опасность классических аналогий

Классические аналогии помогают понять квантовую физику, однако их буквальное применение становится причиной противоречий. В качестве примера приведем сравнение спина электрона с вращательным движением электрона вокруг оси. Рассмотрим сферу с радиусом R и массой М, которая вращается вокруг своей оси с угловой скоростью со (угловая скорость определяется как число оборотов в единицу времени). Скорость точки на экваторе сферы рассчитывается как произведение угловой скорости и радиуса сферы V = ω•R. Момент импульса, связанного с вращательным движением (он представляет собой вектор, сонаправленный с осью вращения), можно записать как произведение момента инерции сферы

и угловой скорости: L = l•ω. Таким образом, мы можем связать скорость точки на экваторе сферы с моментом импульса вращения:

Подставим в указанную формулу параметры электрона и рассмотрим значение скорости. Если мы свяжем момент импульса со спином электрона, то получим L =h/2. В международной системе единиц (метрах, килограммах и секундах) h = 1034 и М = 9•1031 . Чему может быть равно значение R? Оно должно быть меньше размера атома и меньше фемтометра (1015 м) – именно такие размеры имеет ядро атома. Подставив эти числа в предыдущее выражение, получим, что скорость точки на экваторе будет более чем в 500 раз превышать скорость света в вакууме.

Если же принять, что радиус электрона еще меньше, то скорость точки на его экваторе будет еще больше. Иными словами, если сравнить спин электрона с вращением тела вокруг своей оси, то результат будет противоречить теории относительности – никакое тело не может двигаться со скоростью, превышающей скорость света в вакууме. Таким образом, результаты квантовой механики не всегда можно истолковать, основываясь на классических аналогиях.

Гейзенберг обнаружил, что волновая функция должна быть антисимметричной (иными словами, она должна менять знак) при замене двух идентичных электронов, так как только в этом случае будет выполняться принцип Паули.

Допустим, что электроны могут находиться в двух квантовых состояниях, которые мы обозначим буквами a и b. Волновую функцию можно будет записать как a(1)b(2), иными словами, электрон 1 будет находиться в состоянии a, электрон 2 – в состоянии b. Но так как электроны 1 и 2 идентичны, различие между ними произвольно: мы могли записать волновую функцию в виде а(2) b(1). Наиболее общим представлением волновой функции будет линейная комбинация обоих вариантов, то есть два выражения:

a(1)b(2) + a(2)b(1)

и

a(1)b(2)-а(2)b(1),

которые отличаются между собой только знаком. Если мы поменяем местами индексы 1 и 2 или состояния a и b, то в первом случае получим ту же линейную комбинацию, во втором – ту же линейную комбинацию, но с противоположным знаком. Эти комбинации называются симметричной и антисимметричной к смене индексов частиц и состояний соответственно. Какое из этих двух выражений удовлетворяет принципу Паули? Если мы рассмотрим два электрона в одинаковом состоянии, то результат антисимметричной комбинации будет равен нулю. По всей видимости, именно в ней учитывается принцип Паули. Этот простой пример иллюстрирует более общий результат для системы из множества электронов: волновая функция этой системы должна быть антисимметричной, то есть менять знак при смене индексов любых двух электронов.

Вернемся к атому гелия и уточним описанные выше обозначения. Волновая функция каждого электрона представляет собой произведение пространственной части, в которой для обозначения трех квантовых чисел используются буквы n и m, и спиновой части. Для обозначения пространственной части волновой функции используем греческую букву φ(фи) и будем записывать φn(1) и φm(2). В спиновой части два возможных состояния спина обычно обозначаются греческими буквами альфа и бета, поэтому будем записывать α(1) и β(2).

Волновая функция для двух электронов будет записываться так:

φm(1)φn(2)α(1)β(2) – φm(2)φn(1)α(2)β(1).

Это в самом деле антисимметричная комбинация: при смене индексов электронов мы получим тот же результат, но с противоположным знаком. Кроме того, если обозначения состояний равны, итоговый результат равен нулю. Таким образом, принцип Паули выполняется.

Данному принципу удовлетворяет и следующая линейная комбинация:

m(1)φn(2) + φm(2)φn(1)] • [α(1)β(2) – α(2)β(1)].

Это произведение симметричной комбинации пространственных частей и антисимметричной комбинации спиновых частей. Аналогично определяется следующая комбинация: