Но вспомним: практически каждая из триллионов клеток тела содержит полный комплект индивидуальной ДНК. Поэтому даже если в одних клетках ДНК полностью исчезнет, то в других, запрятанных в укромных тайниках тела, могут и сохраниться кое-какие генетические следы. К примеру, любые процессы разложения идут в присутствии воды. А если какой-то участок тела высохнет, не дожидаясь полного разложения ДНК? Тогда разрушение ДНК остановится, и отдельные фрагменты могут законсервироваться. Так происходит, если тело оказывается в сухом месте и мумифицируется. Тело может высохнуть случайно — мало ли, где настигает смерть, — или же труп подвергается намеренному обезвоживанию. Более всего этим знаменит Древний Египет, где примерно от 5000 до 1500 лет назад тела сотен тысяч умерших подвергались ритуальной мумификации, чтобы их души и после смерти имели пристанище.
Пусть даже никакой мумификации не происходит, но некоторые части тела, такие как зубы и кости, продолжают существовать еще долго после захоронения. Живые клетки в этих твердых тканях устроены в крошечных полостях минеральной матрицы; без живых клеток не было бы никакой возможности наращивать новую костную ткань, например при переломах. Когда костная клетка умирает и ее содержимое растекается, то ДНК может связаться с минеральной основой. Минеральные комплексы обеспечивают химическую защиту молекулам ДНК. И за счет этого некоторой части ДНК может посчастливиться избежать немедленного разрушения.
Предположим, что часть ДНК пережила посмертный телесный хаос. Но есть и другие процессы, которые набрасываются на генетическую молекулу, действуя, правда, гораздо медленнее. Отнесем к ним фоновую космическую радиацию, постоянно создающую активные радикалы, трансформирующие и разрушающие ДНК. И другие химические процессы, идущие в присутствии воды — такие как превращение Ц в У, — как мы уже знаем, не останавливаются при высушивании. В огромной ДНК всегда присутствуют молекулы воды, пристроенные между двумя нитями, потому что составляющие нитей имеют сильное сродство, афинность, с водой. Эти молекулы воды вступают в самопроизвольные водозависимые реакции. Самая быстрая из таких реакций — деаминация, потеря аминогруппы цитозином. В результате этой реакции — и не только этой, но и многих других, пока еще не расшифрованных, — молекула ДНК дестабилизируется, и нити рвутся. Так что мало опустошения, какое производит смерть в генетическом хозяйстве, ДНК продолжает убывать и дробиться, даже если удалось пережить клеточную смерть. Понятно, что темпы утраты генетической информации зависят от многих факторов: от температуры, кислотности и прочего. Но даже при самом благоприятном стечении обстоятельств генетическая программа, которая строила шаг за шагом свой персонаж, в конце концов разрушается и исчезает. Получается, что нам с коллегами удалось захватить еще не завершенный процесс деградации неандертальской ДНК: за 40 тысяч лет природные силы еще не до конца справились со своей разрушительной задачей.