Пожалуй, существует некоторая параллель между научным проектом по физике Солнца, выполненным под руководством Людовика XIV, и советским атомным проектом прошлого века. Людовик, которого не назовешь либералом, мог удовлетворять свои прихоти. В истории он известен и менее симпатичными предприятиями, чем исследования солнечных пятен. Однако его концентрация усилий на выбранном направлении действительно дала впечатляющие результаты. Мы привыкли думать, что свобода – необходимая предпосылка развития науки. С этих позиций знаменитый английский мыслитель и историк Бокль в книге «История цивилизации в Англии» рассматривал эпоху Людовика XIV как начало конца французской науки, вскоре после этого она стала проигрывать английской. Видимо, астрономический проект Людовика заставляет быть более осторожным в оценках, хотя в конечном счете свобода лучше несвободы. Мне кажется, что об этом уже говорилось не так давно.
Людовик прожил долгую жизнь, но, естественно, все равно умер. Примерно в это же время умер и Ла Ир – последний из плеяды французских наблюдателей той поры, посвятивший себя солнечной тематике. Новое поколение нашло себе новые задачи – не менее интересные и важные, но не связанные с солнечной активностью. Эстафета исследований солнечных пятен перешла к Гринвичской обсерватории, чья работа пополнялась серией любительских, но очень хороших и ценных наблюдений в Германии, а во второй половине позапрошлого века возникла целая сеть обсерваторий и стало возможным проверять данные одной обсерватории по данным другой. Естественно, это повышает достоверность реконструкции.
Однако вплоть до самого последнего времени база данных солнечных пятен остается не вполне однородной. Дело в том, что быстро обновляется наблюдательная техника. От наблюдений в наземных обсерваториях наука переходит к наблюдениям на космических станциях. Они гораздо более точны, чем наземные наблюдения, однако должны ли мы учитывать каждую мелочь в виде отдельного пятна? К тому же каждая станция работает ограниченное время, а сопоставление данных разных станций, мягко говоря, непростая задача.
Поддержание постоянного мониторинга солнечной активности на наземных станциях очень плохо вписывается в правила современной грантовой науки. В общем, научная жизнь – совсем не тихая гавань, где все говорят друг другу только комплименты.
Сейчас число солнечных пятен – далеко не единственный индекс солнечной активности. Этим словом называют интегральный количественный показатель, который характеризует солнечную активность как целое. Даже имея в руках карты распределения магнитного поля по поверхности Солнца, приходится суммировать эти сложные картины и строить такие индексы. Одним из таких полезных индексов является суммарная площадь солнечных пятен. Но у данного индекса есть недостаток: первые наблюдатели не всегда оставляли достаточно подробные зарисовки для того, чтобы вычислить площади!
4. Изотопы помогают солнечникам
Четыреста лет – большой срок в сравнении с масштабом человеческой жизни, но астрономы привыкли оперировать большими числами и хотят узнать и о том, что было на Солнце еще раньше. Тут на помощь совсем неожиданно приходит еще одна наука – изотопная геохимия.
Оказывается, солнечная активность записана в изотопном составе некоторых элементов «в слоях земных», как говорил М. В. Ломоносов. Происходит это так. Землю постоянно бомбардирует поток очень быстрых частиц, прилетающих из глубин нашей Галактики – Млечного Пути, а может быть, и откуда-нибудь подальше. На Земле эти частицы – их называют космические лучи – вступают в реакции с ядрами различных химических элементов, в результате чего образуются другие изотопы, например радиоактивный изотоп углерода. Чем больше космических лучей, тем выше его содержание в атмосфере и на поверхности Земли. Оттуда он попадает в деревья и откладывается в их годичных кольцах. Он попадает в полярные льды и тоже откладывается в годичных слоях этих льдов. Это очень интересно само по себе, но пока не имеет отношения к Солнцу.
Космические лучи должны как-то долететь до Земли. А этому мешает магнитное поле Солнца: в нем так или иначе запутываются заряженные частицы, из которых и состоят космические лучи. Поэтому, чем сильнее магнитное поле Солнца, тем меньше космических лучей долетает до Земли и тем ниже содержание радиоактивного изотопа углерода в соответствующем древесном кольце. Так можно пытаться проследить изменения солнечной активности за время, существенно превышающее четыреста лет.