8. Несколько фунтов вещества
Наука есть лучший современный способ удовлетворения любопытства отдельных лиц за счет государства.
— Читаешь-читаешь, ходишь по семинарам, чего только не слушаешь — и все ради этого?! — Я не могла отвести глаз от поразившей меня строчки: "Радиационные пояса Земли содержат всего лишь несколько фунтов вещества". Это утверждалось в статье, лежавшей передо мною. Среди авторов — известный американский космофизик Ван Аллеи. БЫЛО начало 60-х годов. Совсем недавно поднялся в небо первый спутник.
Исследователь космоса Хесс писал о тогдашней космофизике: "Сейчас новые ценные статьи в этой области появляются со скоростью около одной статьи в день". Хотя изучение космических частиц шло быстро, представление о них оставалось отрывочным. Спутники регистрировали то большее, то меньшее их количество.
Надо было выяснить, откуда они появляются и куда исчезают. Судить же о процессах в огромном и, как оказалось, переменчивом космосе, располагая данными вдоль одной, хотя и многовитковой линии — траектории спутника, очень трудно. Выражения "спутник видел" или "они это видели на своем спутнике" — об исследователях, которые никогда не поднимались в космос, — вошли тогда в лабораторный жаргон космофизиков, да так и остались в нем. Но целостная картина из виденного не очень-то складывалась. В потоке научной литературы я напряженно искала хоть что-нибудь похожее на общие утверждения. И вот узнала: "Несколько фунтов вещества…"
Мало ли фунтов в Галактике! Мы с детства воспитаны в убеждении, что земная атмосфера надежно изолирует нас от них. Правда, эти несколько фунтов находятся вблизи Земли и состоят из весьма энергичных частиц. Присутствие их — радиоактивность космоса — обязательно учитывается при запусках космических кораблей, только тогда можно гарантировать здоровье космонавтов.
Жителей Земли защищает от этих частиц атмосфера планеты. В земных лабораториях исследователь отделен от области повышенной радиации толстыми стенами или специальным заслоном из свинцовых кирпичей. Такой способ защиты космонавта, находящегося вне атмосферы, может быть использован лишь в очень ограниченной мере: космический корабль не должен быть слишком тяжел. В принципе возможен другой способ — отводить подошедшие заряженные частицы в сторону с помощью электромагнитного поля. Но эта методика не отработана, и, кроме того, у нее есть свой недостаток: она может вызывать помехи в работе бортовых приборов. При быстром "проскоке" на корабле опасной зоны радиационных поясов космонавт получает незначительное облучение. Другое дело, если корабль летает внутри самих поясов… Прикладной целью работы специалистов-космофизиков всегда считалось определение степени радиационной опасности при космических полетах.
Однако в начале 60-х годов эта задача уже была в первом приближении решена. Для этого не понадобилось выяснять всю физику процессов в радиационных поясах, достаточно было путем измерений и приближенных оценок оконтурить их область. Уже кружили вокруг Земли спутники, на безопасных орбитах работали космонавты. Решающий шаг человечество сделало: космос стал доступен. Люди получили возможность оглядывать свою планету целиком, проводить в космосе необычные технологические операции. Все это можно делать, летая в той же безопасной зоне. И что нам в таком случае до явлений в радиационных поясах!
Конечно, спутники дают возможность подробно изучать эти явления, но мне казалось не совсем понятным, почему мы этой возможностью пользуемся. Потому что можно изучать или потому что стоит изучать? В самом деле, и на Земле есть много опасных для судоходства мест, но люди осваивают их "в рабочем порядке", не концентрируя на этом много внимания. А запуск космического корабля с его научными приборами стоит недешево. Не излишняя ли это роскошь — исследования ближнего космоса на таком ювелирном уровне? Тем более что даже доскональное его изучение привести к пересмотру фундаментальных законов физики не может, специалисты в этом единодушны: ближний космос живет по тем же самым физическим законам, что и Земля.
Другое дело — дальние космические полеты. Они недаром так интригуют фантастов. Очень может быть, что путешествия к далеким мирам потребуют уточнения наших представлений о фундаментальном в физике. Прогноз обстановки в космосе для корабля, отправляющегося в дальний рейс, совершенно необходим: такой корабль не отзовешь с орбиты в случае непредвиденных обстоятельств. Но мне погрузиться в эту область исследований мешало ощущение ее замкнутости: надо-де с помощью космических кораблей изучать космическое пространство, чтобы в нем могли летать другие космические корабли, исследуя то же пространство. До получения фундаментальных выводов, казалось, так далеко.