Двуокись углерода не является единственной "парниковой молекулой" в атмосфере. Нельзя пренебрегать присутствием других малых компонент атмосферного воздуха — водой, окисью азота, метаном, озоном, фтористым углеродом, теми же фреонами. Хотя влияние увеличенного (и увеличивающегося) содержания окиси азота, метана или озона, взятых порознь, и невелико, но совместный эффект составляет примерно 50 процентов ртепляющего воздействия, обусловленного концентрацией СO2.
Многое надо учитывать и рассматривать. И тщательность изучения требуется очень большая: изменение средней планетарной температуры более, чем на 0,1 °C уже существенно, если продержится долгое время; с изменением же этой температуры на 1–2 °C связывают крупнейшие климатические перестройки. К сожалению, для современной науки такие требования пока непосильны. Нет удовлетворительной теории климата, а значит, нет полного понимания, нельзя построить достаточно достоверного прогноза — все это мы уже обсуждали в главах 9, 12, 13. Как пишут в своей книге "История климата" А. С. Монин и Ю. А. Шишков, "в настоящее время климатологи лишь спорят друг с другом, например, о том, чем было вызвано климатическое потепление первой половины 20-го столетия; происходит ли в 70-х годах резкое похолодание или наоборот, начинается резкое потепление; что приводит к увеличению повторяемости засух — климатические потепления или, наоборот, климатические похолодания, и т. д. Это неудивительно, поскольку климатология лишь в середине текущего столетия начала переходить от стадии описания (да и то затрагивавшего главным образом состояния только приземного слоя атмосферы, т. е. сравнительно небольшой части "климатической системы") к стадии объяснения".
Однако сейчас положение стало быстро меняться к лучшему. Арсенал средств наблюдения пополнили океанографические спутники. С борта спутника можно измерить расстояние до воды и затем составить топографическую карту поверхности океана. Такая карта позволяет найти (в определенном приближении) скорость океанских течений. С помощью спутниковых измерений можно построить карту относительной температуры океанских вод. По такой карте тоже можно следить за течениями, можно также выявить циклонические (по холодному ядру) и антициклонические (по теплому ядру) "мезомасштабные" вихри — есть в океане такие аналоги атмосферных циклонов и антициклонов. Со спутника можно следить за шероховатостью поверхности океана, что позволяет судить о величине и направлении ветра над океаном. Нельзя сказать, чтобы данных было с избытком: океан велик характеристики же хотелось бы иметь детальные и разнообразные, но это все-таки грандиознейший шаг вперед по сравнению с недавним временем, когда об изменчивых океанских течениях приходилось судить на основании данных о сносе судов, бутылочной почты (!) и замеров с помощью немногочисленных заякоренных буйковых станций.
Наметился успех в понимании взаимодействия океан — атмосфера. Академику Г. И. Марчуку и его сотрудникам удалось теоретически установить, что аномалии температуры воздуха сильно зависят от процессов, происходящих в некоторых районах Мирового океана, где в атмосферу из океана переходит огромное количество тепла. Эти районы получили название энергетически активных зон океана. Реальное существование этих зон было подтверждено данными глобальных наблюдений теплового баланса, а также замеченными ранее связями между состоянием океана и последующей погодой.
Когда говоришь о физическом изучении погоды и климата, то обязательно приходится отмечать сложность задачи, взаимосвязанность явлений, которые определяют состояние атмосферы (см. главы 9 и 13). Но нельзя ли разбить сложную задачу на какие-то более простые и последовательно решить их? Как "разобрать на части" механизм, обеспечивающий погоду, чтобы по отдельности "прощупать" его основные узлы? В таких случаях физики обычно прибегают к лабораторному моделированию. (Сейчас еще проводят математическое моделирование — "проигрывают" на электронно-вычислительных машинах различные более или менее упрощенные варианты решения интересующей задачи; путем такого моделирования и были, кстати, получены оценки, которые мы использовали при обсуждении эффектов СO2 и фреонов.) Однако построить установку, даже весьма упрощенно моделирующую атмосферу, очень трудно. Плотность "газа" в такой искусственной атмосфере должна нарастать к "поверхности Земли". В настоящей атмосфере нарастание обусловлено силой тяжести, но тяготение пока неподвластно человеку, и в лабораторных условиях манипулировать им мы не можем. Из чего-то надо еще сделать искусственные океаны, обменивающиеся с "атмосферой" влагой, теплом и движением; все это должно вращаться, иначе океанские и воздушные течения окажутся непохожими на реальные (о роли вращения шла речь в гл. 13). При этом остается еще не отраженной роль небольших, но коварных примесей, о которых тоже шла речь выше.