Выбрать главу

Но когда искусственный спутник уже доставлен на орбиту и начал самостоятельно двигаться, его движение будет зависеть теперь только от скорости, которую он получил при рождении, от ее направления и от высоты над земной поверхностью той точки, откуда он начал свое путешествие.

И тяжелый и легкий спутники, получившие одинаковый «заряд» скорости в одном и том же направлении и на одном уровне над Землей, будут двигаться по одинаковым орбитам, одинаково изменяющимся под действием неравномерного поля тяготения Земли. (Это характерно, разумеется, для всех спутников, которые несравнимо меньше нашей планеты.)

Объясняется это опять-таки тем, что движение спутника происходит не благодаря какому-либо двигателю, а совершенно особым «неземным» образом — под действием силы тяжести. А ее влияние хотя и увеличивается в 10 раз на вдесятеро более тяжелый спутник, но ей и двигать такой спутник в 10 раз труднее, чем легкий. В результате же получается, что оба они будут двигаться одинаково.

Конечно, мы рассматриваем здесь спутники только с точки зрения их движения. Но они не просто двигаются, а выполняют множество важных и незаменимых исследований. И здесь их размеры играют большую роль. Каждый новый советский спутник намного крупнее предыдущего и несет гораздо больше ценных уникальных приборов. Кроме того, чем крупнее спутник, тем легче и удобнее его наблюдать, так как он отражает больше солнечных лучей. Значит, и как небесный землемер крупный спутник лучше.

Но мы рассказали еще не о всех удивительных «способностях» космического землемера. Спутник окажет геодезистам и еще одну услугу: он «измерит» земные глубины, поможет узнать строение недр Земли.

На первый взгляд это кажется совершенно уж невозможным: каким образом спутник, находящийся вне Земли, может, не заглядывая в ее недра, рассказать о том, что творится внутри нашей планеты? Но ведь, прощупывая бугры и впадины поля тяжести, спутник тем самым устанавливает и их причину.

Зигзаги в его орбите появляются в зависимости от того, почувствовал ли он, что под ним находятся плотные гранитные скалы или «мягкая» песчаная отмель, тяжелый «ком» железной руды или легкий известняк. А зная, насколько тверда наша планета и какова ее плотность в разных местах, мы сможем подойти к изучению формы Земли и с другой стороны.

Чтобы лучше понять, как это можно сделать, отправимся снова на X Международный астрономический съезд, на заседание комиссии, где разбираются законы движения полюсов по поверхности Земли, те самые, которые однажды уже помогли геодезистам уточнить форму Земли, показав, что она не правильный, а трехосный эллипсоид. Только на этот раз речь идет не о том, какой вид имеет путь полюса, а о том, сколько времени уходит у полюса на каждый оборот.

Лот, закинутый в недра Земли

На чертеже, висящем в аудитории, где заседает эта комиссия, — знакомый нам «завиток» — след, который полюс оставляет на земной поверхности. Его внимательно разглядывают участники заседания. Они словно стараются увидеть в этих небрежных штрихах картину строения земных недр, так ярко нарисованную докладчиком.

За кафедрой — советский астроном, приехавший на съезд из Полтавы, Е. П. Федоров. Сообщение, которое он только что сделал, вызвало у собравшихся живейший интерес. Но больше всего оно взволновало и обрадовало, пожалуй, англичанина Г. Джефриса, который считал когда-то вес дождевых капель и снежинок, выпадающих на всем земном шаре, и стремился доказать, что именно они заставляют полюс дополнительно покачиваться во время пути, делать лишние зигзаги.

Подумать только, как близки оказались теперь их выводы: то, к чему этот советский астроном пришел, изучив огромное количество произведенных по всей Земле наблюдений за движением полюса, он, Джефрис, получил, строя теоретические модели Земли.

«Движение полюсов, строение земных недр, спутник и съезд астрономов — а при чем же здесь определение формы Земли?» — подумает иной читатель. Но дело в том, что все эти, казалось бы, такие разные проблемы самым причудливым образом переплетаются в современной геофизике — еще одной науке, которая участвует в изучении земной фигуры.

Вопрос о том, какую форму имеет Земля, уже в эпоху установления закона всемирного тяготения приобрел геофизический характер. Ньютон считал, что Земля в ту пору, когда складывалась ее фигура, была жидкой, расплавленной. Исходя из этого, он строил свои выводы о ее сжатии. По его подсчетам, оно вышло равным 1/230. В действительности, как известно, оно оказалось несколько меньше. Почему так получилось?