Как бы его обнажить и сделать понятным?
Грубо, конечно, но все же не настолько грубо, чтобы от истинной сути дела ничего не осталось, можно так передать смысл их начальных исканий: оба надеялись построить микромеханику, на разные лады разоблачив странную двойственность волн-корпускул или корпускул-волн. В сущности, каждый из них со своей точки зрения хотел показать, что у элементарных частиц только одно лицо подлинное, а другое — маска. Одно соответствует их материальному естеству, а другое — лишь отражает характер их сложного поведения.
Говоря уже совсем не грубо, а только образно, события в атомном мире представлялись обоим физикам как бы карнавалом, на котором либо частицы надевают личину волн, либо волны выступают под маской частиц. Был выбор: рисовать себе дело так или этак. Был выбор: отдать предпочтение волнам или отдать предпочтение частицам.
Когда сегодня студенты решают практические задачи по квантовой механике, они с легкостью делают этот выбор, думая только об удобстве рассуждений и об упрощении математических выкладок. А принципиально для них вообще не существенна эта проблема — что предпочесть: они уже знают, что и так и этак получится одинаково хорошо. В первой же лекции они узнали и на всю жизнь усвоили, что симметрия волн-частиц в микромире полная! Но пусть не покажется, что и первосоздатели микромеханики могли решать для себя этот вопрос беззаботной жеребьевкой: кинули монету, посмотрели — «орел» или «решка», сказали: «Так тому и быть». И не стоит думать также, что каждый из них сделал свой выбор по трезвому расчету: осмотрелся, прикинул трудности, решил. «Так будет лучше!» Один решил: «Буду рассматривать частицы, держа в уме волны». Другой решил: «Буду рассматривать волны, держа в уме частицы».
Тут работала интуиция. В ту начальную пору выбор между волнами и частицами затрагивал глубины физического мировоззрения. Он определялся складом мышления и души. Тут боролись под спудом XIX и XX века в естествознании. Это не преувеличение.
«Волны материи»! В их смутном еще образе оживала надежда вернуться к старой, испытанной непрерывности движения в природе.
Частицы и квантовые скачки! В их образе, тоже отнюдь не ясном для воображения, подчеркнуто утверждала себя чуждая старой картине природы прерывистость процессов в микромире.
Надо бы подробно проследить все извивы ранней научной биографии обоих ученых, чтобы безошибочно объяснить, почему Шредингер стал работать под девизом — «Волны и непрерывность!», а Гейзенберг под девизом — «Прерывность и частицы!». Но нам, пожалуй, довольно заметить, что цюрихский профессор был на четырнадцать лет старше и, следовательно, геттингенский ассистент был на четырнадцать лет моложе… Оба шли вперед, но Шредингер оглядывался на классические представления о непрерывном течении физических процессов, а Гейзенберг готов был к любой новизне, самой диковинной.
Из таких-то разных устремлений родились в 1925–1926 годах две разные механики микрособытий. Это не домысел. Есть верное свидетельство выдающегося теоретика Макса Борна (его имя уже попалось однажды на нашем пути), что дело обстояло именно так, а не иначе.
Каковы же были две эти механики? Здесь об их премудростях можно сказать только два слова, но нам этого и достаточно.
Гейзенберг раздумывал о прерывистом ряде устойчивых состояний атома, о правилах движения по боровской лестнице квантовых скачков. Его не смущала полная невозможность ни вообразить, ни описать, как протекает каждый такой скачок. Он видел: они реальны, эти скачки! И был убежден, что пытаться раскрыть их механизм — бесцельно: внутренне они не членятся на более мелкие события. А если как-то и членятся, то физически это не обнаруживается: скачок сопровождается испусканием целого кванта. Или поглощением, когда энергия приходит извне.
Уже шла речь о том, какая большая неприятность для нашего сознания эти квантовые скачки. Прежде природа нигде и никогда не демонстрировала настоящей прерывности в ходе физических процессов. Но достаточное ли это основание для того, чтобы пытаться любой ценой очистить от квантовых скачков картину внутриатомной жизни?! Прерывность — подлинное лицо многих событий в микромире. Так думал Гейзенберг. Волнообразность микрочастиц он считал маской. И вначале надеялся вообще от нее избавиться.
Он хотел проникнуть в математические закономерности, по которым одни квантовые переходы в атомах осуществляются чаще, другие — реже. Он искал способ предсказывать вероятности всех возможных скачков с уровня на уровень. Тогда можно было бы ответить на вопрос, почему в спектре натрия так ярко горит именно желтая линия, а в атомах возбужденного стронция чаще всего происходит скачок с испусканием кванта красного света.