От логики конечных величин человечество должно было шагнуть к логике бесконечных множеств. На это понадобилось два с лишним тысячелетия. И примерно столько же понадобилось философии, чтобы прийти к строгому диалектическому заключению, что в природе осуществляется на каждом шагу единство непрерывного и прерывного, конечного и бесконечного.
Вот видите: даже простейшее классическое движение по траектории совсем не такая уж простая штука для понимания. Но Пушкин не об этой сложности думал, а о другой: о сомнительной ценности наших ссылок на очевидность, когда мы хотим что-нибудь доказать. Упрямый Галилей настаивал на вращении Земли вопреки ее видимой неподвижности — и был прав, Диогеновский способ наглядно демонстрировать истину не всегда годится.
Нам он не годится вовсе.
Демонстрировать процесс движения в микромире не смог бы никакой Диоген XX века. И потому именно не смог бы, что там нет траекторий. Призывать в свидетели наше зрение наивно.
Разве в прямолинейно летящем световом луче виден отдельный фотон? Недаром Кеплер думал об истечении непрерывной материи из светового источника — как все мы, он видел, что «это так», и — заблуждался. Когда катится по горной дороге поток овечьего стада, истинное движение каждой овцы ускользает от нашего внимания. Вглядываясь в туманные нити на вильсоновских фотографиях, мы вовсе не прослеживаем действительный путь космической частицы: эти треки из капелек тумана как завалы поверженных стволов на лесной просеке — точного отчета о движениях дровосека они не дают. (Помните — частица внутри туманного следа подобна мухе в тоннеле метро.)
Сказал я про овец и дровосека — и сразу пожалел об этом. Такие сравнения порождают ложные соблазны: начинает невольно думаться, что какой-нибудь очень тонкий опыт все-таки сделает когда-нибудь зримо ясной картину движения — скажем, электрона в атоме водорода. Вооружившись биноклем и терпением, можно ведь распознать извилистый путь любой овцы в катящемся стаде. И путь дровосека можно в конце концов установить во всех деталях — надо лишь предпринять докучливое исследование. Отчего же не предположить, что и физики сконструируют со временем сверхсильный микроскоп для съемки документального научного фильма «Путешествие электрона» или «Электрон на орбите»?
Все дело в том, что такой фильм никогда не будет снят. И в этом «никогда» — запрет самой природы. Он очень понятен.
…Чтобы увидеть и снять электрон в атоме, этого карлика надо осветить.
Все лучи видимого спектра — от синего до красного — для такой цели не подходят: длины их волн слишком велики. Это 3–7 тысяч ангстрем (стомиллионных долек сантиметра). А размеры атома водорода в нормальном состоянии порядка 1 ангстрема. Можно ли ожидать, что видимый свет отразится даже не от электрона, а от водородного атома в целом? Это все равно что надеяться на заметное отражение морской волны от одной прибрежной песчинки.
Видимый свет не ощущает отдельного атома как сколько-нибудь серьезное препятствие на своем пути. Окруженные воздухом, мы его молекул не видим, хотя они и освещены солнечным светом — белой смесью красных, желтых, зеленых, синих лучей. Очень уж ничтожно рассеяние этих лучей при встречах с молекулами кислорода, азота, водорода. Оттого и не виден воздух. Но все же чем короче световая волна, тем эти молекулы заметней для луча, как препятствие. (Но точнее нужно сказать, что для солнечных лучей «заметней» не отдельные молекулы, а их тесные скопления, так называемые «флуктуации плотности воздуха», постоянно возникающие в атмосфере.) И потому самые коротковолновые из видимых лучей — синие — рассеиваются воздухом ощутимей, чем красные. В громадной толще земной атмосферы этот крошечный эффект постепенно накапливается и создает глубокую синеву прозрачного неба. А длинноволновые лучи, от желтого до красного, проходят сквозь атмосферу, почти совсем не рассеиваясь, и создают оранжевый цвет Солнца в нашем восприятии.