Выбрать главу

Так, попытка достичь абсолютной точности измерений погружает физика в трясину бессмыслиц.

Но вовсе не бессмыслица стремление ко все большей точности. Спросите физика: «Можете вы узнать положение электрона в момент вашего опыта с ошибкой, не большей, чем стомиллиардная ангстрема?» Он ответит: «В принципе — могу». И назовет длину волны или частоту фотона, какой понадобился бы для этой цели. А пожелай вы еще большей точности, он назовет еще большую частоту (или, что то же самое, еще меньшую длину волны).

Правда, все эти цифры физик будет называть действительно только «в принципе». Или, лучше сказать, только для того, чтобы утешить нас, вопрошающих и жаждущих все большей точности. А втайне, про себя, физик будет знать, что на пути к неограниченной точности в измерении положения электрона неизбежно возникнет одно непреодолимое затруднение, о котором теоретикам стало известно далеко не сразу. Здесь об этом можно лишь вскользь упомянуть.

Дело в " том, то фотон — «кусочек материи» — может в подходящих условиях превращаться в другие «кусочки материи». Он может исчезать, порождая пару новых частиц — электрон и позитрон. Для этого надо прежде всего, чтобы энергии (а значит, и массы) у фотона было достаточно для рождения такой пары новых микрокентавров. Образуется именно пара частиц, обязательно — пара: отрицательно заряженный электрон и положительно заряженный позитрон, чтобы в сумме заряд обеих частиц был равен нулю, ибо и сам фотон имеет нулевой заряд — он нейтрален. А когда энергии-массы у фотона так много, что может родиться много пар, происходит в подходящих условиях множественное рождение электронов и позитронов. Могучий фотон гибнет, а на его месте появляется целое семейство наследников.

«Накалывание» атомного электрона «острием» сверхкоротковолнового, сверхэнергичного фотона как раз и будет сопровождаться таким множественным рождением пар. Физические условия — столкновение с атомом — для этого очень подходят. А массы у взятого для измерения фотона так много, что наследники наверняка не замедлят родиться на свет (тут уж точнее сказать: не «на свет», а «из света»). Когда же рядом с атомным электроном возникнут новые, только что сформировавшиеся, ни один экспериментатор не сможет отличить виновника происшедшего, чья координата измерялась, от расплодившихся его близнецов. Измерение окажется бесполезным. Вот что, кроме всего прочего, станет преградой на пути к увеличению точности.

3

Однако, как бы то ни было, в момент измерения координаты физик побеждает неопределенность в положении электрона. И чем точней допустимое измерение, тем полнее победа. Из двух неопределенностей одну он может, хотя бы мысленно, устранять с неограниченным успехом. Остается посмотреть: нельзя ли при этом с таким же успехом побеждать и другую? Именно — «при этом», в это же время. Иными словами, надо посмотреть, нельзя ли одновременно со сколь угодно точной информацией о положении электрона в атоме получить столь же точную информацию о направлении и быстроте его движения?

Хоть мы уже и твердили на разные лады, что нельзя, надо в этом убедиться на деле.

Когда «острие в 0,1 ангстрема» накалывает атомный электрон, соударение с очень массивным фотоном выбрасывает электрон из атомного пространства. Он удаляется из места встречи куда-то в неизвестность, буквально — в неизвестность, так как вариантов столкновения бесчисленное множество. (Еще больше, чем на старом добром бильярдном столе, потому что фотон и электрон — это не твердые шарики.) В эту неизвестность электрон уводит та скорость, какая становится его достоянием как раз благодаря столкновению с накалывающим фотоном. Значит, надо признать, что в то самое мгновенье, когда координата электрона уточняется, его скорость бесконтрольно меняется скачком.

Понимаете, что происходит, и притом — неизбежно: именно и только по вине уточняющего измерения координаты скорость делается в момент измерения еще менее определенной, чем она была бы, если б в атом не вторгся фотон и не нарушил его нормальной жизни!

И ясно, что, когда физик берет еще более тонкое, еще более разящее «острие» — фотон с длиной волны в 0,0001 ангстрема, электрон в момент накалывания претерпевает в своем движении еще несравненно большую пертурбацию. Скорость его еще разительней меняется скачком.

Такова цена возрастающей точности в измерении положения микрокентавра: это возрастающая неточность в значении его скорости. Когда первая неопределенность убывает, вторая — неотвратимо растет. И с этим ничего нельзя поделать — вот что замечательно!