Выбрать главу

Они полагали, что классическая механика была гораздо совершенней: она допускала в принципе одновременную абсолютную точность любых измерений. Она признавала просто никуда не годным эксперимент, при котором измеряемое хоть как-то зависело от процесса измерения. Астроном глядел в телескоп на Луну и, конечно, понимал, что от его глядения с Луной решительно ничего не происходит. И он действительно был вправе не задумываться над тем, что кто-то Луну освещает, давая ему тем самым возможность воочию ее наблюдать. Этот «кто-то» — свет Солнца, прямо падающий на Луну или сначала отраженный от Земли. Но астроном был вправе не задумываться над этой стороной дела только потому, что потоки солнечных фотонов никакого заметного влияния на движение Луны оказать не могли. (Тут та же история, что с волнообразностью Земли или дробинки.)

Так неужели ученые-мечтатели, тоскующие по классической «точности знания», не понимали этого простого обстоятельства? Конечно, понимали. Однако они думали еще о том, что классическая физика никогда не запрещала с абсолютной точностью учитывать любые вынужденные неточности экспериментов. Хотя бы в принципе! Разумеется, астроном пренебрегает давлением света на Луну и прочими деталями взаимодействия ее громады с фотонами. Но в принципе, теоретически, он может абсолютно точно знать, чем пренебрегает. Не приблизительно, а совершенно точно! Стоит только подсчитать это. Технические трудности не важны — важно, что никакие законы природы, познанные классической физикой, этому не мешают.

Так рассуждали и рассуждают тоскующие мечтатели. Их не устраивает, что вдруг появилась наука, которая утверждает, что абсолютной точности астроному при всем желании ни практически, ни теоретически не добиться. Его ждет у заветной цели хоть и малая, но уже не уменьшаемая «каморка неточностей». И как бы ни были скрупулезны его поправки, движущаяся Луна раньше или позже поселится в этой каморке и пригвоздить ее к абсолютно точной орбите уже не удастся. Правда, тут возникает чудовищно малая по астрономическим масштабам неточность. знания, до смешного малая, но не в размерах ее дело: в принципе «нехорошо получается». Наука словно бы сама ограничивает свои возможности. Вот что смущает. Смущает многих — всех, кто привык в старой, мудрой и «такой понятной» классической физике видеть идеальный образец постижения законов природы. А ведь к этому с детства, со школы, привыкают все.

Сколько раз мы убеждались на предыдущих страницах, как тяжко расставаться с извечными убеждениями! И нам легко понять, отчего философы-механисту и физики-классики объявили внутренней слабостью квантовой механики ее откровенное признание, что она вовсе не всегда может считать и измерять абсолютно точно. И вот уже тридцать лет «квантовики» вынуждены объяснять неверующим, что незачем их, теоретиков, побивать камнями: тут не их вина — тут открылись глубинные свойства самой материи, которые можно было заметить только на микроуровне бытия природы. Это с предельной ясностью отразилось именно в размере минимальной «каморки неточностей».

Оценить, ее величину можно совсем просто. И для этого вовсе не надо снова обращаться к какому-нибудь воображаемому опыту, вроде разглядывания, электрона под сверхмикроскопом Гейзенберга.

6

Суть в том, что при всяком способе измерения координаты или скорости любой элементарной частицы, да и вообще при любом измерении физик должен заставить микрокентавров заговорить — дать ответ на заданный вопрос. От атомной системы, подвергнутой измерению, должен прийти ответный сигнал. Не придет сигнал — физик ничего не узнает. Если откинуть все технические подробности, которым несть числа, сущность любого измерения только в том и состоит, чтобы заставить атом или элементарную частицу послать какой-нибудь ответный сигнал. Так атомный электрон должен был отразить (рассеять) пришлый фотон, дабы тот сообщил экспериментатору, где довелось ему встретиться с электроном.

А сигнал никому не дается даром! Ни измеряющему, ни измеряемому. В этом все дело.

Никого не удивляют материальные лабораторные затраты — каждому ясно: прибор должен действовать, чтобы измерять. Но с ответными — и тоже вполне материальными — затратами природы, отвечающей на вопросы экспериментатора, ученые мало считались до атомной поры. Микромир принудил их стать более справедливыми. Из-за малости атомов и частиц ответный сигнал обходится микромиру очень дорого. Это и есть искажающее влияние измерения.

Что же тратят на свой ответ атом или частица?