Выбрать главу

Ой в самом деле мечтал избавить картину природы от двойственного лика элементарных частиц. Он верил, что из неких волн можно теоретически смастерить корпускулы, то есть показать, что они — волновые образования и, следовательно, «вначале были волны». Де Бройль, впервые заговоривший о «волнах, материи», никогда не заходил так далеко. (Он писал недавно, разбирая тонкости старых споров: «Шредингер, который не верил в существование частиц, не мог следовать за мною».)

Вообще-то говоря, конструирование из любых волн подобия частиц дается физикам без особого труда. Волны ведь умеют гасить одна другую, когда их гребни и впадины не совпадают, и они умеют взаимно усиливаться, когда гребень приходится на гребень. Не надо ничего воображать, надо лишь вспомнить зрелище реки, взбудораженной разными волнами — высокими и низкими, длинными и короткими: в этой разнобойной мешанине волн нет-нет да и выплеснется где-нибудь непомерно вздыбленный гребень, а вблизи от него водяная поверхность окажется на мгновенье гладкой, точно притихшей и обессиленной, отдавшей все свое беспокойство этому единственному гребню. Так наложение множества простых волн разного ритма и размаха колебаний создает новую сложную волну. У нее может быть любая форма — это давно доказано математиками. Наложившись одна на другую, составляющие волны могут погаситься взаимно во всем пространстве, кроме одной маленькой области, где отдельные горбики соединенными усилиями поднимут единственный высокий гребень.

Так математически достигается желаемое. Волны с их «размазанностью» по пространству словно бы исчезают совсем. Остается сжатое в кулачок волновое образование — волновой пакет, по образному выражению физиков. Всплеск материи! Корпускула!

Вот о чем-то в этом роде Шредингер и мог мечтать.

Надо и нам признаться: образ волнового пакета очень соблазнителен — он выручает из беды нашу мысль и наше воображение, которым так трудно осилить противоречивое сочетание «волна-частица». Ведь и вправду — образ волнового пакета просто снимает это противоречие: частица сделана природой из волн, вот и все. А тут еще на счастье — волновое уравнение Шредингера для описания движения в микромире. Ведь Шредингер вывел его для некоей величины, которая волнообразно меняется во времени и пространстве, и назвал эту величину не слишком затасканной греческой буквой «пси», как бы предупреждая, что с такой физической величиной наука еще не имела дела. Сразу возник соблазн: думать, что его уравнение как раз и показывает, «из чего и как» природа мастерит корпускулы. Пакет из пси-волн — вот и частица!

Шредингер вначале так и думал. Электрон в атоме водорода представлялся ему облачком, волнообразно меняющим в атомном пространстве свою плотность — плотность электрического заряда. Иными словами, шредингеровские пси-волны сперва действительно могли показаться реальными «волнами материи». И на первый взгляд все так хорошо получалось, что даже в толк взять нельзя, зачем надо было физикам доискиваться какого-то таинственного смысла волновых построений Шредингера? Непонятно — над чем тут голову ломал Макс Борн?

Да и, наконец, что за нелепость: неужели бывает так, что теоретики сначала сочиняют формулы, а потом додумываются до их истинного физического содержания?!

Бывает. Создатели квантовой механики никогда не скрывали, что с ними так именно и случилось. Весною 1929 года, читая лекции в Чикагском университете, Вернер Гейзенберг смутил заокеанскую аудиторию не совсем обычным признанием: «Нужно указать, что развитие математического аппарата квантовой механики предшествовало физическому пониманию атомной физики».

Такие вещи поражают. Ведь со стороны большинству людей точная наука рисуется хорошо налаженным «логическим производством» истин: природа доставила сырье, исследователи переработали его своим физическим пониманием, на склад ушла готовая продукция безупречных формул. Так выглядит физика в учебниках: не драма идей, а приходная ведомость. Или расписание поездов. Это по необходимости: иначе ни один изучающий никогда не доехал бы до станции назначения. А в действительности расписания нет, и наука, как поэзия, «вся — езда в незнаемое». И, может быть, физике повезло, что квантовая механика сначала была создана, а потом по-настоящему понята: неизвестно, хватило бы у строителей решимости воздвигать ее здание, если б знали они заранее, на каком фундаменте строят.