Классические образы в физике возникали и возникают на почве нашего «большого опыта», с изучения которого некогда началась наука. Но этот опыт —. лишь маленький участок на бесконечной шкале необъятного опыта природы. Так участочек видимого света — от красного до фиолетового — занимает лишь крошечный интервал на шкале всех возможных частот электромагнитных колебаний — от самых коротковолновых гамма-лучей до неограниченно длинных радиоволн.
По обе стороны видимого спектра есть у природы свои цвета, которых мы не различаем.
Фантазируя, можно вообразить себе гигантов, обитающих где-нибудь в глуши вселенной, которые видят радиоизлучение звезд и туманностей и с глубочайшим недоумением поглядывают в сторону нашей Земли с ее широковещательными станциями. Земля им видится единственным в своем роде источником радиорадуг над их головой. И если где-нибудь еще есть планеты или звезды с такой же высокой радиоцивилизацией, как у нас, эти гиганты догадываются о существовании иных населенных земель тоже по их странному «радиоцвету». Какие краски существуют на палитре художников того неведомого мира радиогигантов? Гадать бессмысленно — это не наши краски.
И с таким же успехом можно вообразить себе карликов из Галактики гамма-квантов с особым, решительно не похожим на наш, физическим опытом жизни. Академики из мира радиогигантов и гамма-карликов, вероятно, очень долго не могли бы найти общего языка с нашими земными учеными. И еще труднее им было бы договориться между собой. Но в конце концов договорились бы, потому что природа едина!
С открытием электрона и фотона физики вторглись в мир иных масштабов и иного опыта, чем тот, в котором, веками вырабатывали люди свои представления о движении материи. Для ученых этот иной опыт, конечно, явился неожиданностью. И потому был горек плод познания.
Но стоит повторить, что в природе этот новый для наших физиков микроопыт равноправно располагается на естественной шкале ее неограниченного разнообразия по соседству с земным макроопытом, как невидимая область ультрафиолета соседствует со спектром видимых лучей. И природа не поставила нигде грозного пограничного знака — «оставь по ту сторону свой земной опыт, здесь начинается микромир!».
Оттого-то даже непоследовательная, еще наполовину классическая модель Малой вселенной атома, построенная Резерфордом и объясненная Бором, смогла принести поначалу замечательные успехи физикам. Стало ясным происхождение прерывистых спектров и открылся смысл чередования элементов в периодической системе Менделеева: элемент следовал за элементом в порядке возрастания заряда атомного ядра, а поведение семейства самых далеких от ядра — наружных — электронов объяснило химические свойства элементов. Впечатление от этих успехов было огромно.
«Мы ожидали работ Бора, — рассказывал сравнительно недавно Гейзенберг, вспоминая пору своего студенчества, — по меньшей мере с тем же напряжением и с таким же пылом дискутировали о них, с каким сегодня ожидаются и обсуждаются последние известия из Кореи. Будучи студентами, мы в известной мере бессознательно ощущали, что и здесь, в работах Планка, Эйнштейна и Бора, разыгрывается кусочек мировой истории — правда, без заголовков в газетах и радиосообщений, но все-таки такой эпизод мировой истории, который должен был оставить свои следы на столетия».
Гейзенберг имел в виду мировую историю человеческого познания. Но, право же, не случайно пришло ему в голову сравнить тот давний интерес к отвлеченным исканиям теоретиков с недавним интересом к «последним известиям из Кореи». К середине XX века от былой отвлеченности изысканий физиков-атомников не осталось и следа. Он мог бы напомнить своим слушателям, что через 30 лет после появления основополагающей идеи квантовых скачков, в 1943 году, союзники увозили Нильса Бора из оккупированной немцами Дании тайком, как величайшую «военную ценность». Его переправляли через Северное море в бомбовом отсеке боевого самолета и, как всякую военную ценность, которая не должна достаться врагу, предполагали одним движением рукоятки сбросить в море, если гитлеровские истребители окружат и поведут на посадку бомбардировщик. Могла ли Нильсу Бору — «юноше довольно хрупкого вида» — пригрезиться такая перспектива в 1913 году, когда дал он первую расшифровку квантовых законов атома! Он еще не знал, как станет звучать со временем невинное слово «атомник»!