Выбрать главу

Следовательно, β-частицу можно рассматривать как электрон, вылетающий из радиоактивного атома. γ-Лучи не являются частицами в прямом смысле этого слова. Они представляют излучение, обладающее, подобно свету, волновыми свойствами, с той только разницей, что γ-лучи имеют гораздо более короткие длины волн, чем свет.

Однако такое описание γ-лучей не является полным. Волновая природа γ-излучения удовлетворяла физиков XIX века, но в начале XX века на световые волны смотрели уже с новой точки зрения.

В 1900 году немецкий физик Макс Планк после изучения закономерностей излучения нагретым телом световых волн различной длины обнаружил, что объяснить все явления радиации можно только в том случае, если энергия излучается маленькими порциями, которые он назвал квантами.

Тело может излучать один квант света или два, но оно никогда не излучает полтора или два и одну треть кванта. Энергия излучается не непрерывно, а дискретно, отдельными порциями, или квантами. Однако кванты так малы, что в обычных условиях их нельзя различить, и энергия кажется непрерывным потоком. Подобно этому, песчаный берег издали представляется сплошной широкой полосой и только на близком расстоянии в песке становятся заметными отдельные песчинки. Более глубокой аналогией является пример алюминиевого бруска, который даже под лучшим микроскопом кажется сплошным, но который, как мы теперь знаем, состоит из отдельных мельчайших атомов.

Но не все кванты так малы. Величина квантов излучения зависит от длины волны. Чем короче длина волны, тем больше кванты. Длина волны обычного света равна примерно 1/20 000 см. Эта очень маленькая величина достаточно велика, чтобы квант видимого света был очень малым. Длины волн γ-лучей почти в 5000 раз меньше длин волн видимого света, следовательно, кванты γ-лучей по крайней мере в 5000 раз больше квантов обычного света.

В некоторых случаях кванты ведут себя как частицы поэтому они были названы фотонами (от греческого phos (photos) — свет). Естественно, чем больше кванты, тем ярче выражены корпускулярные свойства излучения. Обычный свет, обладая малыми квантами, слабо проявляет корпускулярные свойства, поэтому в XIX веке его принимали за чисто волновое явление. γ-Лучи, обладая большими квантами, проявляют корпускулярные свойства, которые нельзя игнорировать. Поэтому фотон γ-лучей относят к частицам, образующим субатомный мир.

Атомное ядро

Открытие α- и β-частиц заставило физиков изменить свои основные представления об атомах. В течение всего XIX века они считали атомы самыми мелкими частицами вещества. Предполагалось, что каждый отдельный элемент состоит из определенных атомов, отличающихся друг от друга только массой.

Масса отдельного атома исключительно мала. Чтобы получить один грамм массы, надо взять около трех миллиардов триллионов самых тяжелых из известных атомов. Чтобы не иметь дело с такими маленькими числами, химики предпочли приравнять массу атома кислорода произвольному числу 16 и относительно него измерять массу всех других атомов, или атомный вес. Число 16 было выбрано так, чтобы ни один атом, даже самый легкий, не имел по «кислородной шкале» атомный вес меньше единицы [7]. По этой шкале атом водорода имеет атомный вес 1, атом гелия — 4, атом серы — 32, атом урана — 238 и т. д. [8].

Однако с открытием радиоактивности стало очевидным, что атом, каким бы ни были его свойства, не может быть просто очень маленьким бильярдным шариком, как его представляли химики XIX века. Он должен иметь структуру, должен состоять из еще меньших, субатомных частиц.

Масса β-частицы, как я уже говорил, в 1837 раз меньше массы самого легкого атома, тогда как весьма тяжелая а-частица гораздо меньше атома. Исчерпывающие эксперименты показали, что диаметр обычного атома порядка одной стомиллионной сантиметра. Диаметр α-частицы намного меньше. Потребовалось бы около 50 тысяч частиц, уложенных одна к одной, чтобы они могли заполнить диаметр атома.

Решительный шаг в понимании внутреннего строения атома сделал английский физик, уроженец Новой Зеландии, Эрнест Резерфорд. Он обстрелял тонкие металлические листки α-частицами и обнаружил, что они проходят через металл так, как будто на их пути ничего нет. Он сделал вывод, что атомы в основном «пусты». Но иногда α-частица как будто сталкивалась с чем-то твердым и отклонялась в сторону. К 1908 году Резерфорд пришел к заключению, что в состав каждого атома входит маленькое атомное ядро, расположенное в центре атома и занимающее не более одной триллионной его объема. Однако несмотря на ничтожно малые размеры, на атомное ядро приходится 99,95 % всей массы атома. Остальная часть атома занята электронами, имеющими такую малую массу, что для летящей α-частицы, масса которой более чем в 7000 раз превосходит массу одного электрона, она кажется пустой [9].