Рассмотрим систему, содержащую несколько таких частиц. Если справедлив закон сохранения момента количества движения, суммарный спин системы должен быть равен сумме спинов отдельных частиц. Пусть система состоит из четырех частиц — протонов или электронов, или тех и других вместе. Если каждая частица имеет спин +1/2 или -1/2, суммарный спин равен нулю или целой величине. Суммарный спин любой системы, содержащей четное число частиц, каждая из которых имеет спин + 1/2 или -1/2, всегда равен нулю или целому числу.
Если же система состоит из нечетного числа частиц каждая из которых имеет спин +1/2 или -1/2, суммарный спин никогда не будет равен целому числу или нулю, а будет принимать только полуцелые значения.
Следовательно, если атомное ядро состоит из протонов и электронов, суммарный спин ядра (ядерный спин) зависит от полного числа всех частиц. Тогда, если ядро азота 7N14 в самом деле состоит из 14 протонов и 7 электронов, общее число частиц 21, т. е. нечетное, и ядерный спин азота-14 должен быть равен 1/2.
Эксперименты, проведенные в 1929 году, показали, однако, что он равен целому числу.
Такое несоответствие было обнаружено и для некоторых других ядер. Стало совершенно ясно, что, если ядра содержат и протоны, и электроны, некоторые из них нарушают закон сохранения момента количества движения. Физики страшно не любят отказываться от закона, если есть возможность избежать этого, поэтому они бросились на поиски какого-либо другого объяснения строения ядра.
Предположим, что вместо пары протон — электрон в ядре присутствует одна незаряженная частица. Ее существование не влияет на закон сохранения электрического заряда, так как суммарный электрический заряд пары протон — электрон равен нулю, заряд заменяющей их частицы также равен нулю.
Разница заключается в моменте количества движения. Если протон и электрон имеют спины +1/2 или -1/2 каждый, суммарный спин будет равен +1, 0 или -1. Незаряженная же частица может обладать спином +1/2 или -1/2. Ядро азота-14 должно тогда состоять из протонов и незаряженных частиц.
Если масса нейтральной частицы равна массе протона, массовое число должно быть равно 14, а атомный номер (обусловленный одними протонами, так как только они обладают положительным зарядом) — семи, т. е. это был бы изотоп 7N14. Только общее число частиц в ядре было бы 14, т. е. четным, вместо нечетного 21. Но при четном числе частиц, каждая из которых имеет спин 1/2, спин ядра азота должен быть целым числом. Таким образом, закон сохранения момента количества движения был бы спасен.
Трудность заключалась в самом отыскании этой незаряженной частицы.
Методы обнаружения субатомных частиц были основаны на их способности выбивать электроны из атомов, с которыми они сталкиваются, превращая их в ионы. Последние регистрируются разными приборами, используемыми физиками для изучения частиц.
Ионы образуются частицами, несущими любой тип заряда Отрицательно заряженная частица отталкивает отрицательно заряженные электроны и выбивает их из атома, вблизи которого она пролетает. Положительно заряженная частица притягивает электроны, вырывая их из ближайших к ней атомов. Незаряженная частица не взаимодействует с электронами, т. е. не образует ионов, а следовательно, ее нельзя обнаружить непосредственно. Тем не менее, существуют косвенные методы обнаружения невидимых обычно объектов. Если вы посмотрите в окно, вы увидите деревья, но не увидите воздуха. Однако если вы заметите, что листва на деревьях колышется, справедливо предположите, что она получает энергию за счет движения каких-то масс, которые вы не в состоянии видеть. Тщательно изучая поведение движущихся листьев, можно много узнать о свойствах воздуха, совсем не видя его.