Выбрать главу

Более близкими к реальному процессу выглядели экс­перименты с каплями диаметром два—три миллиметра, подвешенными на проволочку термопары — прибора, из­меряющего температуру жидкости. Каплю заключали в ящик — термостат с определенной температурой. Он имел окна, иногда кварцевые. В случаях высоконагре­той среды или опытов с горением капли киноаппарат фиксировал ее меняющиеся размеры. Шаровая симмет­рия явления, казалось бы, позволяла составить уравне­ние процесса, математически решить задачу и сопоста­вить результат с данными опыта. Но не тут-то было — природа вмешалась в идеальные схемы. Капля окутыва­лась направленным вертикальным языком паров или продуктов сгорания. Они всплывали в окружающей среде, поскольку отличались от нее по удельному весу — явление естественной конвекции, обусловленное подъем­ной силой Архимеда. Модель шаровой симметрии лома­лась, получался некий искусственный обдув, то, что на­зывается «нечистый опыт». 

Оригинальный выход нашли хитроумные японцы, предложив метод «падающего ящика». Камера-лифт с подвешенной каплей падала по направляющим вместе с включенным киноаппаратом. В камере, согласно зако­нам механики, возникало состояние невесомости для всех тел, в том числе и для газов, окружающих каплю. Восстанавливалась шаровая симметрия и чистота опы­та. Фотографии в падающем лифте показали строго сферический фронт пламени вокруг горящей капли вместо привычного огненного языка. В наше время такой опыт мог бы с успехом проводиться на спутнике. 

Уместно вспомнить, что одним из первых «взвесил» каплю известный бельгийский физик и анатом Жозеф Плато. Его опыт стал классическим и часто демонстри­руется на лекциях. В прозрачный сосуд с водным рас­твором спирта вводят каплю не смешивающегося с ним масла. Концентрацию раствора подбирают так, чтобы уравнять плотности обеих жидкостей. Тогда сила тя­жести капли будет уравновешена архимедовой силой, и капля станет невесомой. Другими словами, в игре трех воздействующих на каплю сил: веса, гидростати­ческого давления и поверхностного натяжения — две первые взаимно уничтожаются. Капля независимо от диаметра неподвижно повисает в жидкости и приобре­тает строго шарообразную форму. Это обеспечивает си­ла поверхностного натяжения, всегда стремящаяся при­дать капле минимальную поверхность при заданном объеме. Кстати, сейчас возникла целая область гидро­динамики невесомости, важная для спутников и косми­ческих аппаратов, на борту которых всегда имеются жидкости различного рода и назначения. 

Рассмотрим процесс испарения, отталкиваясь от мо­дели с шаровой симметрией. Представим себе крупным планом каплю, взвешенную в неподвижном воздухе, температура которого намного превышает температуру капли. В первый момент холодная капля начинает ин­тенсивно прогреваться от окружающего воздуха. Пока не установился стационарный тепловой режим, посту­пающая энергия расходуется в основном на прогрев и в меньшей степени — на испарение. Быстро, за малые доли общего времени жизни капли, ее температура почти достигает определенного предела, называемого температурой равновесного испарения. Вообще темпера­тура испаряющейся капли жидкости никогда не может сравниться с температурой окружающей среды: капля нагреется, но не достигнет температуры среды, по­скольку с ростом температуры увеличивающийся отток пара будет тормозить подвод тепла к капле. 

Динамика начального прогрева капли всегда достав­ляла много хлопот теоретикам: что происходит у нее внутри? Можно предполагать, что порция тепла не успе­вает проникнуть в глубь капли и происходит испаре­ние внешнего слоя, Вслед за первым слоем испаряется следующий, капля сбрасывает с себя оболочки жидкости, как луковица — «одежки». Или, напротив, тепло рас­пространяется почти мгновенно, равномерно прогревая каплю до самого центра, и потом лишь начинается за­метное испарение. Наблюдения над крупными каплями с добавкой окрашенных частиц показали: внутри кру­тятся интенсивные вихревые токи. Если так, ближе к истине вторая схема: вихрь — отличная мешалка, вы­равнивающая температуры по всему объему капли. Но в мелкой капле, в которую заглянуть труднее, слишком тесно для обитания вихрей; возникнув и рассеяв свою энергию на трение, они должны быстро погаснуть. 

Борис Викторович Раушенбах, умевший, когда тре­бовалось, привлекать самый сложный математический аппарат, здесь поступил по-инженерному просто: взял каплю «в вилку», вычислив испаряемость в двух край­них пределах: в предположении послойного испарения, то есть бесконечно медленного прогрева (нулевой коэф­фициент теплопроводности), и мгновенного, равномер­ного прогрева (коэффициент теплопроводности — бес­конечность). Получились предельные оценки процесса при крайних режимах испарения: когда эти пределы не слишком расходились, можно было для реального про­цесса брать средние значения. Как начало такой при­ближенный подход давал полезную ориентировку. 

Но вот капля достигла температуры равновесного испарения, теперь все внешнее тепло тратится на паро­образование, то есть на преодоление внутренних моле­кулярных сил сцепления. Тепловой эквивалент этой ра­боты на единицу массы жидкости называется, как из­вестно, теплотой парообразования — вырвать молекулы из капли не так просто. Этот энергетический вклад в молекулы возвращается ими при обратном переходе пара в жидкость, например при конденсировании влаги в росу. 

Рассмотрим картину процесса (рис. 20). На поверх­ности капли, как на всякой границе раздела жидкой и газообразной фаз, сохраняется тонкий слой насыщенного пара, он находится в термодинамическом равновесии с жидкостью — у них одинаковые температуры. Молеку­лы в хаотическом тепловом движении непрерывно сну­ют через границу в обе стороны. Те, что вылетают из капли,— пар, те, которые возвращаются в жидкость,— конденсат. Когда вылетающих молекул больше, происходит испарение.

Рис. 20. Схема процесса испарения капли: а — неподвижная капля (С, t — концентрация и температура в слое пара вокруг капли), б — капля в потоке (1 — реальный слой пара, 2 — слой пара в теорети­ческой модели) 

 Давление насыщенного пара, называе­мое упругостью пара, не зависит от окружающего дав­ления, а определяется только свойствами жидкости и ее температурой. Капля становится центром двух встреч­ных потоков — энергии и вещества. Извне к ней идет поток питающего тепла, а от нее — отток пара. Молеку­лярная диффузия — процесс перемешивания и проник­новения молекул — переносит тепло от среды с более высокой температурой к холодной поверхности капли. Одновременно и вещество переносится от насыщенной паровой прослойки вовне. 

Законы диффузии вещества и тепла известны, и опи­санную картину нетрудно перевести на язык математи­ки — уравнения тепломассообмена. Если принять модель шаровой симметрии, эти уравнения содержат лишь одну пространственную координату — радиус точки-сферы. Это упрощает дело. Решение таких уравнений дает пол­ное описание явления: кривые распределения температур и концентрация пара вокруг капли и скорость испаре­ния — расход пара в секунду с единицы жидкой поверх­ности. Зная скорость испарения, можно найти время жизни капли. 

По аналогии с моделью испарения были построены модель и теория диффузионного горения неподвижной капли, позволившие вычислить время ее сгорания. Сфе­рическое пламя — тонкий нимб вокруг капли, наблю­давшийся в опытах «с падающим ящиком», устанавли­вается на поверхности, где паровоздушная смесь имеет коэффициент избытка воздуха α=1 (это означало, что химическая реакция избирает себе оптимальные усло­вия). Стационарная поверхность фронта пламени — это граница подвода и отвода тепла и вещества. Устанавли­ваются «встречные перевозки»: от фронта к капле — мощный поток тепла, от капли — мощный поток пара, питающий пламя горючим. Извне к фронту пламени идет поток кислорода-окислителя, а от него вовне продукты сгорания; тепло и вещество переносятся молекулярной диффузией. 

Задача испарения неподвижной капли была решена. Но в камерах сгорания капли движутся. Предстояло подняться на следующую ступень: решить задачу испа­рения летящей или (что равнозначно) обдуваемой воз­духом капли. Обдув резко повышает скорость испаре­ния: влажные руки на ветру высыхают быстрее. Приро­да идет навстречу инженеру, обеспечивая почти полное испарение за короткое время пролета капель через камеру, если капля достаточно мелкая. Но для исследо­вателя природа не делает поблажек. Маленькая кап­ля— тугой узелок взаимосвязанных процессов. Механи­ка ее движения зависит от аэродинамики обтекания (сил сопротивления), скорость испарения — от скорости полета. Широкое облако пара, окружающее неподвиж­ную каплю, теперь спрессовано напором потока в тон­кий пограничный слой летящей капли толщиной в деся­тые доли ее радиуса. На крошечном интервале в сотые доли миллиметра (рис. 20, б) температура газа резко возрастает: например, на капле бензина от температу­ры жидкости tж=70°—75°С (уже близко к температуре кипения) до температуры газа 1500 °С. В обдувающем потоке столь же резко падает концентрация пара — от насыщенных паров на жидкой поверхности почти до пуля за пределами пограничного слоя. Законы переноса тепла и вещества в среде приблизительно подобны: чем выше градиент температур (перепад на единице дли­ны), тем больше поток тепла от газа к капле, чем выше градиент концентраций пара, тем больше поток испа­ряющегося вещества от капли.