Здесь суммарная кинетическая энергия жидкости в сложном движении через сопло форсунки (где она идет по винтовым линиям) складывается из энергии поступательного движения со скоростью до и вращательного — со скоростью и.
Удельная кинетическая энергия рv2/2 по аналогии с первым слагаемым Р называется скоростным или динамическим напором Рg — эта энергия может перейти в давление. Если текущую жидкость остановить ладонью, то вы почувствуете суммарное давление Р+Рg , которое называется полным напором (с точностью до потерь на трение; эта сумма равна давлению в баллоне).
В медицине, например, используется полный напор струи для безыгольной инъекции вакцины. Специальный импульсный шприц подает кратковременную струю высокого давления. Это «жидкая игла» безболезненно прокалывает, точнее даже, пробивает кожу.
А вот новинка хирургии — «выстрел клеем»: специальный биологический клей вводят из пневмопистолета струей в зону операционного разреза. Механизм действия этого целебного пистолета таков. Клей, поданный под большим динамическим напором Рg в межклеточное пространство живых тканей, сдавливает сосуды, останавливая кровотечение. Оставшийся на поверхности разреза клей образует корочку, способствующую заживлению. В обоих устройствах потенциальная энергия начального давления переходит сначала в кинетическую энергию, а потом, при ударе о поверхность, снова в давление.
Из уравнения Бернулли видно, что давление и скорость — «антагонисты»: если вдоль потока v растет, то Р падает, и наоборот — с замедлением потока повышается давление. На этом явлении основан, в частности, самый простой и экономичный распылитель — парикмахерский пульверизатор, дающий широкий факел с очень тонким распыливанием при малом расходе парфюмерии, что вполне устраивает и парикмахера, и клиента. Т-образная трубочка с перекладиной наверху опущена во флакон с жидкостью. Воздух из резиновой груши под давлением поступает в трубку, где его скорость (согласно закону сохранения расхода) резко возрастает: ведь трубочка намного уже, чем груша. Следовательно, давление, согласно уравнению Бернулли, упадет, и возникшее в перекладине разрежение по вертикальной трубочке будет засасывать жидкость вверх. Там быстрый поток воздуха погонит ее к выходу на другом конце перекладины, распыливая на капельки.
Уравнение Бернулли позволяет просто получить приближенные формулы для скорости истечения и расхода жидкости из отверстия распылителя в атмосферу. Запишем уравнение сохранения энергии (3) между начальным сечением в баллоне, где давление равно Ро, а скорость течения жидкости почти нулевая (баллон очень широк сравнительно с отверстием), и сечением выхода в атмосферу с давлением Ра:
Для форсуночных и капельных нужд нам хватило трех уравнений сохранения, но мы упоминали еще о четвертом. Оно знаменательно, в частности, тем, что приводит к формуле для реактивной тяги двигателя, лежащей в основе всей ракетной техники. Вспомним простой и общеизвестный пример. Вы стоите в неподвижной лодке на озере и бросаете тяжелый камень с кормы — лодка двинулась в противоположную сторону. Объяснение дает закон сохранения количества движения (или импульса), из которого вытекает важное следствие: положение центра тяжести (или центра масс) системы под действием внутренних сил остается неизменным. До броска центр тяжести лодки со всем содержимым покоился в некоторой точке. Когда мы выброси» ли камень, часть массы системы ушла назад, распределение масс изменилось, но центр тяжести «не имеет права» перемещаться. Чтобы сохранилось его прежнее положение в пространстве, лодка должна ‘была двинуться вперед. То же и с ракетой: до запуска она была неподвижной, но когда массы газа стали вытекать из сопел, ракета, подчиняясь общему закону, полетела в противоположную сторону. Мощные струи газа будут вытекать из ракеты, сама она унесется далеко в космос, а центр тяжести системы «газы—ракета» останется по- прежнему в своей исходной точке, на земле. Закон количества движения гласит: импульс сил — произведение сил на время их действия — равен изменению количества движения всех тел в системе.
Если этот закон применить к ракете, получим формулу тяги:
P = Gwc (7)
Здесь Р — тяга двигателя; в правой части уравнения — количество движения газов, вылетающих из сопла (G — массовый расход газов, wс— их скорость на срезе сопла).
Формула (7) показывает: конструктор имеет два ресурса для увеличения тяги — расход G и скорость wс вытекающего вещества. Но топливо и так составляет львиную долю массы всей ракеты, выше определенного запаса его не возьмешь. Вот почему поток газов в сопле (где тепловая энергия переходит в кинетическую) разгоняют до огромных скоростей, в несколько раз превышающих скорость звука.
Четыре основных уравнения сохранения только в первом приближении — в идеальном случае установившегося течения невязкой, несжимаемой жидкости — заменяют более общие законы движения жидких сред и взаимодействия их с твердыми телами. Эти сложные дифференциальные уравнения содержат время и координаты перемещающихся частиц и способны дать более полную картину трехмерного мира жидкостей и газов с учетом всех действующих сил. В них входят физические константы среды: вязкость, плотность и другие, найденные из опыта. В них (совместно с граничными условиями) заложена вся информация о течении — они могут ответить на вопрос: куда и в какое время придет любая частица жидкости, предсказать все явления и факты. Многочисленные опыты и практика подтвердили их право называться фундаментальными законами природы. Однако решение этих уравнений является очень сложным делом и не всегда возможно, даже при современных ЭВМ.
Гидромеханика, как и другие естественные науки, веками поднималась к вершинам познания «в связке альпинистов»: опыт — теория. Первый шаг делает опыт, это наблюдение, установленный факт (еще не полностью понятый), использование в практике каких-то явлений. Опыт ставит задачи, подтягивает за собой теорию. Она делает следующий шаг: как правило, бросок выше поставленного рубежа, к математическим обобщениям. Теория многое объяснила, но теперь возникли новые задачи для опыта, в которых теория выступает уже заказчиком: нужно проверить в эксперименте решения ее уравнений, правильность гипотез. Снова включается опыт — уже на следующей ступени, вооруженный новой приборной техникой. Так, выполняя заказ времени, известный американский физик А. Майкельсон (1852— 1931) ставит в 1881 году свой знаменитый опыт по измерению скорости света. Он использует для этого точные дифракционные решетки Роуленда. И вот результат: гибнет старая гипотеза эфира, рождается теория относительности — «связка» преодолевает величайший барьер в истории науки.
Так попеременно вырубая ступени в упорной породе, обгоняя и подтягивая друг друга, непрерывно движутся в единой связке опыт и теория. Общие дифференциальные уравнения гидромеханики — одна из самых высоких вершин этого восхождения: с нее далеко видно.
Катаклизмы внутри форсунки
Теперь со знанием дела, слегка подкованные по части гидродинамики, обратимся снова к форсунке: интересно, как там работает связка «опыт—теория»? Вблизи горизонтальной оси форсунки, где радиус r мал, скорость вращения жидкости и велика, это диктуется уравнением (2). Велика и кинетическая энергия — слагаемое в законе Бернулли pu2/2. Следовательно, другое слагаемое— давление Р — мало. Двигаясь все ближе к оси, при r ->0 получаем — согласно уравнениям (2) и (3) — нечто странное: и-> ∞ , Р-> —∞.