Выбрать главу

Условием устойчивого состояния антишестилучевика является гармония между вытекающими материями через центральную зону смыкания матричных пространств и синтезируемыми в граничных зонах смыкания (внешних) материями данного типа квантования мерности. Этот баланс можно описать тождеством вида:

∫∫N(-)dmidi = 6 ∫∫η(+)dmidi      (2.3.6)

где:

N(-) — центральная зона смыкания матричных пространств, через которую материи вытекают из нашего матричного пространства (супераналог — «чёрная дыра»);

η(+) — краевые зоны смыкания матричного пространства, через которые материи притекают в наше матричное пространство;

mi — масса материи данного вида.

Тождество (2.3.6) можно переписать в более удобном для понимания виде:

∫∫N(-)dmidi - 6 ∫∫η(+)dmidi = 0         (2.3.7)

Естественно, таких суперпространств в нашем матричном пространстве много. Они создают, как бы, узлы в матричном пространстве и являются «атомами» в нём. И вновь структура макрокосмоса аналогична структуре микрокосмоса. Это — ещё одно подтверждение их единства. Условием балансной устойчивости нашего матричного пространства является баланс между синтезируемой в матричном пространстве материей и материей вытекающей через зоны смыкания матричных пространств. Это условие можно записать в виде:

n1[∫∫N(+)dmidi - 6 ∫∫η(-)dmidi] ≡ n2 [∫∫N(-)dmidi - 6 ∫∫η(+)dmidi]     (2.3.8)

где:

n1 — количество шестилучевиков;

n2 — количество антишестилучевиков;

N(+) — центральная область смыкания матричных пространств, через которую материи притекaют в наше матричное пространство (шестилучевик);

N(-) — центральная область смыкания матричных пространств, через которую материи вытекают из нашего матричного пространства;

η(-) — лучевые зоны смыкания с другими матричными пространствами, через которые материи вытекают из нашего матричного пространства;

η(+) — пограничные зоны смыкания с другими матричными пространствами через которые материи притекают в наше матричное пространство;

i — число форм материй;

m — масса материй.

Анализируя тождества (2.2.4, 2.3.6, 2.3.8), легко прийти к выводу о том, что они могут быть выполнимы только при условиях:

[∫∫N(+)dmidi - 6 ∫∫η(-)dmidi] ≡ 0

[∫∫N(-)dmidi - 6 ∫∫η(+)dmidi] ≡ 0   (2.3.9)

Это тождество отражает закон сохранения материи и определяет возможность устойчивого состояния Вселенной. И будет выполнимо только при условии баланса между притекающей и вытекающей из нашего матричного пространства материи, условие выполнения которого можно записать в виде:

∫∫N(+)dmidi - ∫∫N(-)dmidi ≡ 6∫∫η(-)dmidi - 6∫∫η(+)dmidi ≡ 0     (2.3.10)

Это тождество будет выполнимо, если:

∫∫N(+)dmidi - ∫∫N(-)dmidi ≡ 0

∫∫η(-)dmidi - ∫∫η(+)dmidi ≡ 0          (2.3.11)

или:

∫∫[N(+)dmidi - N(-)dmidi] ≡ 0

∫∫[η(-)dmidi - η(+)dmidi] ≡ 0         (2.3.12)

или:

∫∫[N(+) - N(-)]dmidi ≡ 0

∫∫[η(-) - η(+)]dmidi ≡ 0                 (2.3.13)

 Выполнение этих тождеств возможно только при условиях, когда:

N(+) ≡ N(-)

η(-) ≡ η(+)                                   (2.3.14)

Матричных пространств может быть неограниченное число, но для определённого коэффициента квантования пространства, γi возможно только одно матричное пространство. И качественная структура этого матричного пространства определяется типом форм материй и степенью их обратного (вторичного) влияния на пространства. Пространство влияет на материю, но и материя влияет на пространство. Изменение качественного состояния пространства, проявляется в изменении качественного состояния материи. Изменение качественного состояния материи влияет на качественное состояние пространства с обратным знаком. В результате наличия между пространством и материей обратной связи, проявляющейся в их взаимном влиянии друг на друга, возникает компенсационное равновесие между пространством и материей, находящейся в этом пространстве. В результате проявления этого компенсационного равновесия между пространством и материей, каждое конкретное матричное пространство с заданным коэффициентом квантования пространства γi является конечным, как по размерам, так и по формам.