Выбрать главу

а. Расстояние между атомами углерода С в кристалле алмаза.

Рис. 4.3.2.

Рис.4.3.2. Пространственная структура графита, в кристалле которого атомы углерода, в горизонтальной плоскости расположены на одинаковом расстоянии, в то время, как расстояние между слоями в вертикальной плоскости значительно больше расстояния между атомами углерода в горизонтальной. Такое, казалось бы, незначительное отличие в пространственном расположении атомов углерода делает эти кристаллы очень мягкими. Эта пространственная организация атомов углерода носит названия графита и очень широко используется в промышленности и в быту (стержни карандашей, в электронике и т.п.). Те же самые атомы углерода, что создают самое прочное соединение в природе — алмаз, создают и самый мягкий из природных кристаллических соединений — графит. Казалось бы незначительное изменения в пространственной структуре соединения атомов углерода превращает самое прочное соединение атомов в природе, в самое мягкое. Причина такого отличия в свойствах этих соединений углерода С заключаются в различных внешних условиях, при которых они образуются.

Рис. 4.3.3.

Рис.4.3.3. Пространственная структура углеродной цепочки. Соединяясь в цепочки, атомы углерода С могут создавать молекулы в сотни тысяч, миллионы атомных единиц. При этом, такие молекулы влияют на окружающий микрокосмос неравномерно, создавая вокруг себя анизотропную структуру микрокосмоса. Возможность создавать атомами углерода подобные соединения определяется тем, что он — четырёхвалентный. Именно это свойство электронных оболочек атомов углерода создаёт спектр качеств, благодаря которым, стало возможным появление жизни. Так называемые, внешние электроны атомов углерода способны создавать соединения с внешними электронами других атомов в перпендикулярных относительно друг друга направлениях. Именно это свойство позволяет атомам углерода С создавать различные пространственные соединения.

С — атомы углерода.

Н — атомы водорода.

Рис. 4.3.4.

Рис. 4.3.4. Пространственная структура цитозина, одного из четырёх нуклеотидов, структурно образующих молекулы ДНК и РНК. Соединяясь между собой, нуклеотиды образуют спирали молекул ДНК и РНК, которые являются фундаментом жизни. Чудо жизни рождается, как следствие качественно другого пространственного соединения атомов углерода между собой. Подобная пространственная структура соединения атомов углерода образуется в водной среде во время атмосферных разрядов электричества. Три вида соединения атомов углерода между собой порождают три вида пространственной организации материи — изотропную структуру алмаза, изотропную по двум пространственным направлениям и анизотропную по одному, структуру графита и, наконец, анизотропную по всем пространственным направлениям, структуру молекул ДНК и РНК. Таким образом, анизотропность материи является фундаментом жизни.

С — атомы углерода.

Н — атомы водорода.

О — атомы кислорода.

N — атомы азота.

Рис.4.3.5.

Рис.4.3.5. Пространственная структура сегмента молекулы РНК, представляющая собой последовательное соединение в цепочку нуклеотидов — гуанина, аденина, тимина и цитозина. Молекулярный вес этой молекулы составляет сотни тысяч, миллионы атомных единиц и распределён непропорционально в разных пространственных направлениях, что и является уникальным свойством этой молекулы. Пространственная анизотропность молекул ДНК и РНК является необходимым условием зарождения жизни. Именно пространственная неоднородность на уровне микрокосмоса создаёт необходимые и достаточные условия для появления живой материи. Для неживой материи характерно наличие изотропной, симметричной пространственной организации материи. Пространственная и качественная асимметрия — необходимые условия для живой материи. Не правда ли, любопытный парадокс природы? Асимметрия — живая материя. Пространственная неоднородность является не только причиной рождения звёзд и «чёрных дыр» во вселенной, но и причиной чуда природы — жизни.