На той лекции, однако, Спицин промолчал, оставшись при своем размышлении. А потом и вовсе позабыл о нем. И вспомнил только через два года, когда уже на пятом курсе прочел (это было в 1955 г.), что синтез алмазов удался.
Спицин отправился в библиотеку, прочитал все, что там нашлось по интересующему его предмету, и… И не нашел в научной литературе ни подтверждения своим сомнениям, ни их опровержения.
Что с того, что у настойчивых экспериментаторов в XIX в. не было и не могло быть давления в 100 000 атм? Это еще ничего не доказывает — вполне достаточно, если была алмазная затравка, крупица алмазного кристалла, структура, на которой может продолжаться эпитаксиальный рост. И чтобы вокруг этого первоначального кристаллика был углерод…
По мнению Спицина, такие эксперименты ставились, и неоднократно. Вот, скажем, в «Химических и оптических записях» Ломоносова есть такое место: «При кристаллизации ставить на зарод почечные алмазы». (Слово «почечные» означает, по-видимому, малые размеры кристаллов, которые Ломоносов хотел использовать как затравку — русские купцы взвешивали драгоценные камни, пользуясь почками растений как разновесами.)
Правда, удалось ли Ломоносову «поставить на зарод» алмаз — неизвестно. Но зато известны опыты более позднего времени, когда исследователи пытались, сотворить алмаз, пользуясь затравкой — крупинкой природного алмаза. Так действовали в 1880 г. Хэнней и в 1911 г. Болтон. Интересно, что ни тот, ни другой не пользовался графитом: Хэнней хотел нарастить алмаз углеродом костяного масла, Болтон — углеродом метана.
Почему?
А что получилось у Муассана, если — теперь это хорошо известно — максимальное давление внутри остывающего железного слитка не может превысить 1000 атм?
Следует ли не принимать во внимание опыты профессора Руффа (1917 г.; опыт «по Муассану», обработка осадка последовательно серной, соляной, плавиковой, азотной кислотами при температуре до 1000°): 0,5 мг остатка от 10-килограммового слитка — пылинки размером 0,5 мм, которые не реагировали с хлором, тонули в жидкости с удельным весом 3,0 и светились желтым светом в ультрафиолетовых лучах…
В 1938 г. опыт Муассана повторил американец Гершей, и журнал «Сайентифик Америкен» в конце того же года сообщил, что у него получился алмаз весом 7зо карата и длиной 1,5 мм…
Не доверять даже самым солидным данным? Но вот и Лейпунский, уж на что критически относился ко всем попыткам синтеза, а ведь и он допускал, что у Муассана получились настоящие алмазы.
Как это могло быть?
Настолько серьезно этот вопрос беспокоил студента-пятикурсника, что после окончания университета он отправился из Томска в Москву — искать ответа в Институте физической химии Академии наук. Член-корреспондент АН СССР Борис Владимирович Дерягин, специалист по физико-химическим процессам, происходящим на поверхности веществ, заинтересовался соображениями Спицина. И Борис Владимирович Спицин остался в институте — аспирантом у Дерягина.
Кое-какие из вопросительных знаков, наставленных Спициным, его новый руководитель зачеркнул сразу. Например, сомнение относительно метана в опытах Болтона.
Кристалл алмаза — это как бы разросшаяся во все стороны молекула из атомов углерода. И в этой «молекуле» энергия связи соседних атомов друг с другом и расстояния между ними примерно такие же, как энергия связи и расстояния между атомами в молекулах насыщенных углеводородов. Один из них — метан; его молекула представляет собой как бы удобный по размеру каркас, контейнер, содержимым которого в принципе может надстраиваться кристаллическая решетка алмаза.
Однако вопросов, на которые Дерягин знал ответ, было, естественно, не так уж много. И Спицин под руководством Дерягина начал свое исследование.
Спустя примерно полгода Дерягин и Спицин представляли себе что-то вроде «общего плана», в котором были три главные задачи.
Задача первая. Чтобы наращивать алмазный кристалл без высокого давления, нужны свободные атомы углерода либо, еще лучше, свободные радикалы или иные молекулярные «блоки», близкие по конструкции к структуре алмазной решетки. Задача не так проста, как может показаться: многие соединения углерода при повышении температуры немедленно полимеризуются, образуя все более крупные молекулы.
Задача вторая. Свободные атомы углерода (или группы атомов) должны двигаться с весьма большой скоростью, чтобы преодолеть отталкивание одноименно заряженных атомов поверхности алмаза. Иными словами, нужна очень высокая температура.
Задача третья. С поверхностью алмаза должно сталкиваться не больше атомов углерода, чем имеется свободных связей на этой поверхности. Иначе произойдет нечто подобное тому, как если бы каменщику стали подавать не по одному кирпичу, а сразу три или пять. Вместо ровной стенки получилась бы куча кирпичей. Вместо прозрачного алмаза нарастет черный слой графита.