Затем разработали и построили установку, состоящую из большого пресса на 40 тонн, мультипликатора для предварительного сжатия жидкости до 3000 атмосфер и из деталей, позволяющих проводить опыты с газом.
Эта установка обладала оригинальными особенностями. Мы могли заполнять капилляр исследуемым газом при 150 атмосферах. При объеме капилляра в 3 см3 это позволяло производить опыты при давлениях до 20 000 атмосфер. Мы могли в этой установке отделять газ от жидкости и подогревать газ в процессе опыта при сверхвысоких давлениях. По стеклянному капилляру, в котором находился исследуемый газ, давление распределялось равномерно во всех направлениях, и поэтому работа проводилась в условиях полной безопасности.
Такой микрометодикой были научены при высоких давлениях реакции газов с твердыми телами, затем каталитические реакции на тонких проволочках, газовая коррозия металлов, растворимость газов в твердых телах, сжимаемость газов, теплоотдача и т. д.
Были проведены опыты по разложению метилового спирта при 8000 ат и 350° С. Опыты показали, что с повышением давления растет скорость образования диметилового эфира, увеличивается скорость разложения и выход метана и СO2 (вследствие реакции водорода и СО с метиловым спиртом).
При помощи той же микрометодики проведены были исследования поведения коллоидных растворов под давлением. Оказалось, что с повышением давления значительно ускоряется застудневание коллоидов гидрата окиси железа, но образование некоторых других гидратов замедляется…
Все это было удивительно интересно, мы очутились в мире новых, никому не известных явлений, происходящих в веществе…»
Итак, исследовательская группа, в которую входил Лейпунский, занималась изучением действия высокого давления на различные вещества и имела в своем распоряжении оборудование, на котором можно было доводить давление до 20000 атм при 2000° — весьма солидные по тем временам величины. Разве не самым естественным было бы попытаться использовать, это обстоятельство для изготовления алмаза? Наверное, нет. Им казалось, что правильнее было бы начать дело с другой стороны — с расчетов.
И вот, взявшись за эту работу, Овсей Ильич Лейпунский «вычислил» алмяз…
Он начал с того, с чего начинает каждый берущийся за новое дело, — с анализа всего, что было к тому времени сделано десятками, если не сотнями его предшественников.
Среди многих твердо установленных фактов, относящихся к делу, один был более всего огорчителен для изготовителей алмазов: при сгорании 1 г графита выделяется меньше тепла, чем при сгорании 1 г алмаза. Это значит, что на создание 1 г графита израсходовано природой меньше энергии, чем на создание 1 г алмаза. А это, в свою очередь, значит, что беспорядочному сонму углеродных атомов, разгоняемых энергией тепла, гораздо проще сложиться в графит, чем построиться в алмаз.
В любой точке пирамиды, горы или лестницы любой предмет менее устойчив, чем внизу, у основания, потому чт6 только внизу ему уже некуда деться, из любого же другого места он готов скатиться. Или, на языке физики: чем выше поднято тело, тем большая потенциальная энергия запасена в нем. Оно может лежать на пятом этаже как угодно долго, но раз вы единожды его туда затащили, то как только вы уберете то, что это тело удерживает, — в данном случае балки перекрытия и настил пола — оно немедленно само по себе окажется на следующем энергетическом уровне — на четвертом этаже… И так далее. Если убрать все преграды сразу, то названное тело не медля возвратится в свое первоначальное положение — туда, откуда оно было поднято, может быть, лет пять — десять назад, если это был, к примеру, старинный бабушкин рояль. Причем возвратится самопроизвольно: запасенная потенциальная энергия не убывает с течением времени; это весьма важно!
Место атомов углерода в графите можно уподобить нижнему, место в алмазе — верхнему положению рояля.
Чтобы они — атомы углерода — оказались наверху (алмаз), нужно затратить энергию. В любом из возможных положений по дороге к верхнему они сами по себе стремятся занять нижнее положение (быть графитом).
Для того чтобы вычислить, как заставить углеродные атомы подняться на этот энергетический верх, нужны были численные значения физических свойств углерода при разных давлениях и температурах. В том числе при тех, которые еще не были достигнуты. Лейпунский отыскал удобный (изящный, как утверждают математики) способ перебросить мостик расчета от известных значений к неизвестным, но совершенно необходимым для решения задачи. Это было первым успехом.