Примем орбиту Земли как данную. Тогда необходимо объяснить пять чисел: пять отношений диаметров орбит других пяти планет к диаметру орбиты Земли. Если они могут быть объяснены, должна существовать некоторая красивая геометрическая конструкция, которая дает в точности эти пять чисел. Не больше и не меньше. Так что же, проблема в геометрии, для которой имеются точно пять ответов?
Да. Куб является совершенным видом тела, для которого каждая сторона такая же, как и любая другая, и каждое ребро имеет ту же длину, что и все остальные ребра. Такие тела называются Платоновыми телами. Сколько их? Точно пять: кроме куба, еще тетраэдр, октаэдр, додекаэдр и икосаэдр.
Кеплеру долго не удавалось сделать ошеломляющее открытие. Впишем орбиту Земли в сферу. Опишем додекаэдр вокруг сферы. Опишем сферу вокруг него. Орбита Марса располагается на этой сфере. Опишем тетраэдр вокруг этой сферы и следующую сферу вокруг тетраэдра. Орбита Юпитера располагается на этой сфере. Вокруг орбиты Юпитера располагается куб, вне которого летает Сатурн. Внутри земной орбиты Кеплер расположил икосаэдр, вокруг которого вращается Венера, а внутри венерианской орбиты расположился додекаэдр, для Меркурия. Эта объединяющая теория объясняла диаметры орбит планет, что ни одна теория не делала раньше. Это было математически красиво. Так почему в это не поверили? В той же степени, в какой теория была неотразима, она никуда не привела. На ее основе не было предсказано никаких новых явлений. Она даже не привела к пониманию орбитальных скоростей планет. Идея была слишком статической; она объединяла, но не приносила науке ничего интересного.
Кеплер думал об этом долгое время. Поскольку диаметры орбит были объяснены, ему нужно было только объяснить скорости различных планет. Наконец он предположил, что когда планеты путешествуют, их "пение" и частоты нот пропорциональны их скоростям. Высоты пения различных планет, когда они путешествуют по своим орбитам, составляют гармонию шести голосов, которые он назвал гармонией сфер.
Эта идея также имела античные корни, возвращаясь к открытию Пифагора, что корни музыкальной гармонии находятся в отношениях чисел. Но она страдала от очевидной проблемы. Эта идея неоднозначна: имеется много красивых согласований шести голосов. Даже хуже, оказалось, что есть больше, чем шесть планет. И Галилей, современник Кеплера, открыл четыре луны, вращающихся вокруг Юпитера. Так что была еще и другая система орбит в небе. Если теория Кеплера была верна, она должна была быть применима и к вновь открытой системе. Но она была не применима.
Отдельно от этих двух предположений о математической структуре космоса Кеплер сделал три открытия, которые привели к реальному прогрессу в науке. Это были три закона, благодаря которым он сегодня широко известен, предложенные после многолетнего изнурительного кропотливого анализа данных, которые он украл у Тихо Браге. Они были не столь красивы, как другие предложения Кеплера, но они работали. Более того, один из них совершал нечто, чего Кеплер не смог бы сделать иным образом, а именно, было найдено соотношение между скоростями и диаметрами орбит. Три закона Кеплера не только согласуются с данными по всем шести планетам, они согласуются и с наблюдениями спутников Юпитера.
Кеплер открыл эти три закона потому, что он принял унификацию Коперника в свои логические заключения. Коперник сказал, что Солнце находится в центре (или, на самом деле, вблизи центра) вселенной, но в его теории планеты двигались бы тем же образом, было бы Солнце там или нет. Его единственной ролью было освещение сцены. Успех теории Коперника привел Кеплера к вопросу, а не может ли нахождение Солнца вблизи центра каждой планетной орбиты указывать на реальное совпадение центров. И не может ли Солнце, вместо этого, играть некоторую роль в определении планетных орбит. Может ли Солнце некоторым образом оказывать силу на планеты, и может ли эта сила быть объяснением их движения?
Чтобы ответить на эти вопросы, Кеплер выяснил роль точного положения Солнца в каждой орбите. Его первый большой прорыв заключался в открытии, что орбиты не являются кругами, они являются эллипсами. И у Солнца определенная роль: оно находится точно в фокусе эллипса каждой орбиты. Это был первый закон Кеплера. Вскоре после этого он открыл свой второй закон, который заключался в том, что скорости планет на их орбитах возрастают или уменьшаются, когда планеты двигаются ближе к Солнцу или дальше от него. Позднее он открыл третий закон, который управляет отношениями скоростей планет.