А во-вторых, не странно ли совпадение ответов? В любом случае получится 20 разломов потому, что первоначально мы имеем 1 (большой) кусок шоколада, а в конце должны получить 21 (маленький) кусочек. А каждый разлом увеличивает число кусков на 1. Первый разлом — два куска, второй — три, и так далее. Двадцатый разлом — 21 кусок.
Ответ: 20.
Задача 75. 6 человек стоят у лифта 7-этажного дома. Они живут на разных этажах, от 2 до 7. Лифтер хочет доехать до одного какого-нибудь этажа, а там пусть идут пешком. Спуститься на один этаж — неудовольствие, подняться на один этаж — двойное неудовольствие. На каком этаже надо остановить лифт, чтобы сумма неудовольствий была наименьшей?
Смотри решение задачи 29. Если лифт остановится на этаже не ниже 4, то жилец 3 этажа должен идти пешком. Сумма неудовольствий при остановке на 6 этаже минимальна — равна 10 (два для жильца 2 этажа, три для жильца 3 этажа, два для жильца 4 этажа, одно для жильца 5 этажа и два для жильца 7 этажа). Желательно составить таблицу, аналогичную той, что дана в задаче 29. При остановке лифта на 7 этаже можно заставить жильца 3 этажа идти пешком для экономии электроэнергии.
Ответ: На 6 этаже.
Задача 76. Перерисуй по клеткам угол АВС.
Задача 77. Какими двумя цифрами оканчивается выражение
3573 · 3574 · 3575 · 3578 — 3579.
Уменьшаемое содержит множитель 3575, делящийся на 25, и множители 3574 и 3578, делящиеся на 2. Значит, уменьшаемое делится на 100, а все выражение оканчивается на 21.
Ответ: На 21.
Задача 78. Два кладоискателя хотят разделить добычу поровну, чтобы никто не мог сказать, что его обманули при дележе. У них нет никаких средств для измерения добычи или ее частей, кроме собственного глазомера. Как им быть?
Ответ: Один делит на две равные (по его мнению) части, а другой выбирает ту часть, которая ему больше нравится.
Задача 79. В классе все дети изучают английский и французский языки. Из них 17 человек изучают английский, 15 человек — французский, а 8 человек изучают оба языка одновременно. Сколько учеников в классе?
Нарисуем два пересекающиеся круга:
Левый пусть обозначает изучающих английский, правый — изучающих французский. А в общей части будут те, кто изучает оба языка. По условию, в центральной части находятся 8 учеников. Значит, в левой части их 17 — 8 = 9, а в правой части их 15 — 8 = 7. Итого в классе 9 + 8 + 7 = 24 человека.
По вопросам эта задача решается так.
1) Сколько учеников изучает только английский? 17 — 8 = 9.
2) Сколько учеников изучает только французский? 15 — 8 = 7.
3) Сколько учеников в классе? 9 + 7 + 8 = 24.
Ответ: 24.
Задача 80. Какое число пропущено в следующем равенстве?
357 · (285 + 851) = 357 · 285 +___ · 851.
По распределительному свойству умножения, 357 · (285 + 851) = 357 · 285 + 357 · 851
Ответ: 375
Задача 81. 1 сентября 2001 г. — суббота. Какой день недели — 1 октября 2001 г.?
В данной задаче нужно выяснить:
1) сколько дней прошло с 1 сентября 2001 г. до 1 октября 2001 г. (так как в сентябре 30 дней, то с 1 сентября 2001 г. до 1 октября 2001 г. прошло 30 дней);
2) каким днем является день «суббота + 30 дней» (так как 28 дней — это ровно 4 недели, то «суббота + 28 дней» — снова суббота, а «суббота + 30 дней» — понедельник).
Ответ: 1 октября 2001 г был понедельник.
Задача 82. Пианист решил исполнить в концерте четыре сонаты Бетховена: Аврору, Апассионату, Лунную и Патетическую. Концерт должен состоять их двух отделений. Сколькими способами можно распределить эти произведения по отделениям (по две сонаты в каждом)?
Решение ясно из списка:
1 отделение: Аврора, Апассионата; 2 отделение: Лунная, Патетическая.
1 отделение: Аврора, Лунная; 2 отделение: Апассионата, Патетическая.
1 отделение: Аврора, Патетическая; 2 отделение: Апассионата, Лунная.
1 отделение: Апассионата, Лунная; 2 отделение: Патетическая, Аврора.
1 отделение: Апассионата, Патетическая; 2 отделение: Лунная, Аврора.
1 отделение: Лунная, Патетическая; 2 отделение: Апассионата, Аврора.
Другой способ решения выглядит так. В первое отделение нужно включить две сонаты, тогда второе отделение сформируется автоматически. Выбрать первую сонату можно четырьмя способами, вторую — тремя оставшимися. Значит, если учитывать порядок исполнения сонат внутри отделения, то существует 4 · 3 = 12 способов определения программы первого отделения. А так как порядок следования их мы определять не должны, то первое отделение (а значит, и второе) определяется шестью способами.
Ответ: 6 способов.
Задача 83. На окраску 3 кв. м пола уходит 50 г краски. Сколько краски уйдет на окраску пола в комнате площадью 12 кв. м?
12 кв. м в четыре раза больше, чем 3 кв. м, а потому на них уйдет в четыре раза больше краски: 50 г · 4 = 200 г.
Ответ: 200 г.
Задача 84. Какая цифра в задаче на вычисление пропущена: (223 + 81912174 + 23 _ + 345287): 10?
Число, стоящее в скобках, должно делиться на 10, поэтому оно должно иметь на конце цифру 0. Эта цифра получится лишь в том случае, если число 23__ будет иметь на конце цифру 6.
Ответ: 6.
Задача 85. Имеется 9 кг песка и гиря в 250 г. Как в три взвешивания на чашечных весах отмерить 2 кг песка?
Ответ: 1) делим пополам 9 кг; на одной из чаш оказывается 4 кг 500 г; 2) делим пополам 4 кг 500 г; на одной из чаш оказывается 2 кг 250 г; 3) кладем на другую чашу гирю и приводим весы в равновесие, отсыпая лишний вес; этот лишний вес и составит 2 кг.
Задача 86. Перерисуй по клеткам угол АВС.
Задача 87. Расшифруй ребус: х 340 х — х 9 х 2 = 51 x 20.
Достаточно написать пример столбиком, и все пропущенные цифры станут очевидными.
Ответ: 53402 — 1982 = 51420.
Задача 88. На сковородке помещается два блинчика. На обжаривание блинчика с одной стороны требуется 1 минута. Как за три минуты обжарить на этой сковороде три блинчика?
Ответ: Обжарить два блинчика с одной стороны (одна минута), один блинчик перевернуть, второй снять и положить на его место третий (одна минута), положить на сковородку второй и третий (одна минута).