Задача 89. Матери и сыну в этом году лет вместе столько же, сколько отцу и дочери. Сохранится ли это соотношение на будущий год?
На будущий год все, о ком говорится в задаче, станут на 1 год старше. Значит, мать и сын вместе станут на 2 года старше; отец и дочь вместе станут на 2 года старше. Поэтому разность между их возрастами не изменится.
Ответ: Да.
Задача 90. Илья стоит в хороводе. 3-й слева от Ильи тот же, что и 11-й слева. Сколько людей в хороводе?
Из условия ясно, что второй подсчет дает еще 8 человек — полный хоровод или полные два или полные четыре хоровода. Получается или 8 человек, или 4, или 2, но 2 человека — это не хоровод.
Ответ: 8 или 4.
Задача 91. Магазин получил со склада 1000 линеек. Одни из них имеют длину 20 см, а другие 30 см. Общая длина линеек 220 м. Сколько 20-сантиметровых линеек получил магазин?
1) Какова была бы общая длина линеек, если бы все они были 20-сантиметровыми?
20 см · 1000 = 20000 см = 200 м.
2) Какова лишняя общая длина, имеющаяся потому, что среди линеек есть 30-сантиметровые?
220 м — 200 м = 20 м.
3) На сколько 30-сантиметровая линейка длиннее 20-сантиметровой?
30 — 20 = 10 (см).
4) Сколько линеек — 30-сантиметровые?
20 м: 10 см = 2000 см: 10 см = 200.
5) Сколько линеек — 20-сантиметровые?
1000 — 200 = 800.
Решение полезно проверить:
1) Какова общая длина 30-сантиметровых линеек?
30 см · 200 = 6000 см = 60 м.
2) Какова общая длина 20-сантиметровых линеек?
20 см · 800 = 16000 см = 160 м.
3) Какова общая длина всех линеек?
60 + 160 = 220 (м).
Ответ: 800.
Задача 92. В субботу в 3 классе должно состояться четыре урока: русский язык, математика, труд и природоведение. Сколькими способами можно определить порядок следования этих предметов?
На первое место можно поставить любой из 4 уроков, на второе — любой из 3 оставшихся. Значит, первые два урока определяются 4*3 = = 12 способами. В любом из них третье место можно занять двумя способами, итого 24 способа. Последний урок определяется автоматически.
Ответ: 24.
Задача 93. Если намотать 3 м веревки на катушку, получится 100 витков. Сколько витков получится, если намотать полтора метра? 12 метров?
Полтора метра вдвое меньше, чем 3 метра, поэтому полтора метра дадут нам 50 витков. 12 м вчетверо больше, чем 3 м, получится 400 витков.
Ответ: 50 витков, 400 витков.
Задача 94. Человек отвечает на вопросы только «да» или «нет» и имеет право один раз ответить неправду. После нескольких вопросов его спросили: «Ты уже соврал?», и он ответил «Да». Остается ли за ним право соврать при ответе на следующие вопросы?
Может быть, он соврал при ответах на предыдущие вопросы, и на последний вопрос ответил правду. А может быть, он не врал при ответах на предыдущие вопросы и соврал в ответе на последний вопрос. В любом случае он при последующих ответах не может врать.
Ответ: Нет.
Задача 95. Две мухи соревнуются в беге. Они бегут от пола к потолку и обратно. Первая муха бежит в обе стороны с одинаковой скоростью. Вторая бежит вниз вдвое быстрее, чем первая, а вверх — вдвое медленнее, чем первая. Которая из мух победит?
Нужно нарисовать оба этапа соревнования:
Первая муха достигает потолка, когда вторая на половине пути к нему; первая возвращается к полу, когда вторая достигает потолка. Побеждает первая. Заметим, что несущественно, во сколько раз быстрее вторая муха ползет вниз, чем первая.
Ответ: Первая.
Задача 96. Перерисуй по клеткам фигуру АВСD. Убедись, что АВСD — квадрат, то есть что все его стороны равны между собой и все углы — прямые.
Задача 97. Расшифруй ребус: 6 x 21 + 2 х х = х 958.
Достаточно написать пример столбиком, и все пропущенные цифры станут очевидными.
Ответ: 6721 + 237 = 6958.
Задача 98. Попытайся понять, как составлена эта последовательность, и продолжи ее: 1, 6, 28, 145.
Второе число получается из первого так: прибавляем 1 и умножаем на 3. Третье из второго — прибавляем 1 и умножаем на 4. Четвертое из третьего — прибавляем 1 и умножаем на 5. Можно и дальше действовать так же, прибавляя к предыдущему числу 1 и умножая результат на множитель, увеличенный на 1.
Ответ: 1, 6, 28, 145, 876…
Задача 99. Две мухи соревнуются в беге. Они бегут от потолка к полу и обратно. Первая муха бежит в обе стороны с одинаковой скоростью. Вторая бежит вниз вдвое быстрее первой, а вверх вдвое медленнее первой. Которая победит?
Достаточно попросить мух бежать в другом порядке — как в задаче 95. От этого их скорости не изменятся, а значит, не изменится и время бега. Впрочем, можно проследить ход соревнования и в данном порядке. Пока первая муха достигнет середины стены, вторая будет уже на полу. На обратном пути вторая муха пробежит четверть стены, пока первая достигнет пола. Первой останется бежать вверх целую стену, а второй — три четверти стены. Но скорость первой мухи теперь в два раза больше, и она успевает к цели раньше.
Ответ: Первая.
Задача 100. Какое число пропущено в следующем равенстве? (429 — _): (348 + 259) = 0.
Так как частное равно нулю, то делимое равно нулю. Получается, что 429 — = 0, а значит, пропущено число 429.
Ответ: 429.
Задача 101. 1 сентября 2001 г. — суббота. Какой день недели 1 сентября 2002 г.? Сделайте более общий вывод.
В данной задаче нужно выяснить:
1) сколько дней между 1 сентября 2001 г. до 1 сентября 2002 г. (так как эти годы невисокосные, то 365 дней);
2) каким днем является день «суббота + 365 дней» (так как 365 дней — это 52 недели плюс один день, то «суббота + 365 дней» — это
воскресенье).
Ответ: 1 сентября 2002 г. — воскресенье. Более общий вывод: невисокосный год продвигает календарь на один день недели.
Задача 102. В субботу в 3 классе должно состояться четыре урока: два урока русского языка, математика и природоведение. Сколькими способами можно определить порядок следования этих предметов?
Лучше всего выписать все возможные расписания, вначале начинающиеся с РР, потом с РМ, потом с РП, потом с МР, потом с МП, потом с ПР, потом с ПМ: