Выбрать главу

Пожалуй, приведенные данные достаточно красноречивы, и я надеюсь, что доказал читателям полную невозможность самопроизвольного выхода из равновесия окружающих нас тел. А этим, в свою очередь, доказал невозможность создания вечного двигателя второго рода. Неизмеримо вероятнее обезьяне написать собрание сочинений Пушкина, чем создать захудаленький вечный двигатель, выкачивающий тепло из окружающей среды.

Превосходной моделью, иллюстрирующей незыблемость вероятности равновесного состояния, служит ящик, в который засыпают черные и белые зерна. Если их перемешать лопаткой, то скоро они распределятся равномерно по всему ящику.

Зачерпнув наудачу горсть их, мы найдем в ней примерно одинаковое число белых и черных зерен. Сколько бы мы ни перемешивали, результат будет все время тем же – равномерность сохраняется. Но почему не происходит разделения зерен? Почему долгим перемешиванием не удастся черные зерна переместить вверх, а белые вниз?

Все дело в вероятности. Такое состояние, при котором зерна распределены беспорядочно, то есть черные и белые равномерно перемешаны, может быть осуществлено огромным множеством способов (любые два зернышка – черное и белое – можно поменять местами, а беспорядок останется беспорядком) и, следовательно, обладает самой большой вероятностью. Напротив, такое состояние, при котором все черные зерна окажутся вверху, а белые внизу, единственное (ни одного черного зернышка нельзя заменить на белое; как только это сделаешь полный порядок пропал). Поэтому вероятность его осуществления ничтожно мала.

Вечное тепловое движение непрерывно перетасовывает молекулы, перемешивает их так, как это делает лопатка с зернами в ящике.

Энтропия

Внесем небольшое терминологическое изменение в закон о максимальной вероятности равновесного состояния.

Очень часто в физике величины, которые меняются в больших пределах, заменяют их логарифмами.

Напомним, что такое логарифм. Когда я пишу о науке для так называемого массового читателя, для читателя вообще («дженерал ридер» – по-английски) и вынужден использовать какой-либо термин, который в науке имеет такое же самое распространение, как, ну скажем, поэма в литературе, то впадаю в смущение. Объяснять?! Можно обидеть читателя, который вправе сказать: «За кого ты меня принимаешь, неграмотный я, что ли?» Не объяснять? А вдруг он позабыл и не поймет того, о чем будет говориться дальше. Поэтому все же напомню: 102 = 100; 103 = 1000; 104 = 10000 и т.д. Числа 2, 3, 4 и т.д. представляют собой десятичные логарифмы 100, 1000, 10000 и т.д. Как видим, само число возросло в сто раз, а логарифм лишь вдвое.

Логарифмы оказываются полезными и в нашем случае. Вместо того чтобы пользоваться «вероятностью состояния», в обиход вводят «логарифм вероятности состояния». Этот логарифм и называется энтропией.

Закон природы, согласно которому тепло не переходит от холодного к горячему, маховик не раскручивается за счет охлаждения оси и прилегающего к нему воздуха и раствор медного купороса не делится на воду и купорос, кратко формулируется так: энтропия в естественных процессах всегда растет.

Закон возрастания энтропии – важнейший закон природы. Из него вытекает, в частности, и невозможность создания вечного двигателя второго рода, и, что то же самое, утверждение, что предоставленные сами себе тела стремятся к равновесию.

Закон возрастания энтропии иногда называют «вторым началом термодинамики» (термодинамика – учение о тепле). А что такое первое начало? Это закон сохранения энергии.

Название «начала термодинамики» для этих законов природы сложилось исторически. Нельзя сказать, что объединение «под одну шапку» обоих начал было делом удачным. Ведь закон сохранения энергии – это механический закон, которому подчиняются неукоснительно как большие тела, так и отдельные атомы и молекулы. Что же касается закона возрастания энтропии, то, как следует из сказанного выше, он применим лишь к достаточно большому собранию частиц, а для отдельных молекул его просто невозможно сформулировать.