Встречается множество случаев, когда нет преимуществ у отклонений по кривой «вправо» или «влево». А если эти отклонения являются суммарным эффектом большого числа случайностей, то распределение будет гауссовым. (Математики могут доказать справедливость этого утверждения достаточно строго.)
Если же мы ждали симметричной кривой, а получили «хвост» в одну сторону и даже в стороне от колокола наметился ещё один холмик поменьше, то над этим фактом стоит задуматься: вероятно, исследованию подвергалась неоднородная группа явлений. Как это может быть? Например, речь идёт об измерениях роста жителей какого-нибудь города, в котором живут представители двух рас. Пусть девяносто процентов жителей относится к высокорослой расе, а десять процентов – к низкорослой. В этом случае результаты измерений роста не создадут симметричную гауссову кривую: сбоку от среднего роста может наметиться добавочный горб кривой, во всяком случае, кривая распределения будет иметь разные хвосты влево и вправо.
Выводы статистики приобретают ценность тем большую, чем обширнее материал, на основе которого построена гауссова или иная статистическая кривая.
Имея перед глазами кривую статистического распределения или статистические таблицы, мы можем делать предсказания двух типов: уверенные – детерминистские, если речь идёт о средних значениях, и вероятностные – если речь идёт об индивидуальном событии. Правда, обычно вероятностные предсказания не распространяются на конкретное лицо. Скажем, если известно, что средний процент брака в цехе равен 1,5 процента, то есть смысл говорить о вероятности, что 15 деталей из тысячи, изготовленных слесарем Ивановым, попадут в ящик для стружки лишь в том случае, если об Иванове ничего не известно.
На земле живёт очень много людей, они выполняют похожие дела, совершают похожие поступки. Поэтому почти все события, в том числе и такие, которые кажутся редкими и исключительными, свершаются достаточно часто и являются предметом статистики.
Обратимся к таким печальным событиям, как автомобильные катастрофы. Их, оказывается, так много, что можно говорить не только о средних числах катастроф вообще, но и «рассортировать» их по типам причин, из-за которых они произошли. Исследователям известно, например, сколько аварий происходит по вине велосипедистов; есть данные для сравнения числа катастроф, происшедших по вине велосипедистов, имеющих фонари и не имеющих; в сводках автомобильных катастроф, публикуемых ООН, можно увидеть, как они распределяются по возрастным категориям водителей. Из этих сводок видно, что наиболее безопасными для окружающих являются водители среднего возраста; наиболее опасными оказываются мальчишки; небольшое увеличение числа несчастных случаев наблюдается у водителей, перешагнувших за семьдесят. Внутри каждой категории возрастов введены графы для разной погоды, разного времени дня и ночи и т.д. и т.п. И приходится только поражаться стабильности этих данных.
Отнесённые к числу, характеризующему интенсивность движения в стране (что-то вроде числа автомобилей на число километров дорог), данные по катастрофам оказываются совершенно универсальными.
Казалось бы, что может быть случайнее столкновения двух машин. Здесь и усталость водителей, и состояние дороги, и то, что автоинспектора называют «дорожная обстановка», тут и случайно подвернувшийся прохожий, и каток, оставленный на обочине дорожными рабочими, тут и состояние тормозов автомобилей, и ещё бесчисленное множество маленьких и больших факторов. Да, действительно, это типично случайное событие, но так как причин очень много, то законы статистики здесь выполняются безупречно строго.
Недавно был опубликован анализ статистических данных, казалось бы, очень редких событий – исследовалось творчество в области научно-технической деятельности. В статье ставился вопрос: сколь часто одно и то же открытие или изобретение делается одновременно несколькими людьми. Обработка материала привела к следующим выводам: за определённый промежуток времени два человека одновременно пришли к одному научному результату в 179 случаях, три человека – в 51, четыре человека – в 17, пять человек – в 6… Исследователь убедительно показал, что к творческой научной деятельности можно смело применять законы теории вероятностей. Рассуждал он следующим образом.
Представьте себе сад научных открытий. В нём имеется яблоня, на которой растёт тысяча спелых яблок. По саду гуляет тысяча учёных, глаза которых завязаны. Их подводят к яблоне и просят одновременно сорвать по одному яблоку. (Поскольку задача математическая, то мы просим снисхождения к реальности обстановки.) Предполагается, что каждый из участников может дотянуться с равной вероятностью до любого яблока. При такой постановке вопроса можно рассчитать, каковы же шансы обнаружить на одном яблоке одну или несколько рук друзей по профессии. Получаются данные, поразительно близкие к тем, которые мы привели выше.
Статистические распределения всегда представляют познавательный интерес, а в очень многих случаях знание статистики даёт руководство к действиям.
Остановимся же на двух важных примерах: на страховании жизни и предсказании погоды.
Двум… не бывать!
Люди не очень любят размышлять о грядущей неприятности, а тем более о кончине дней своих и своих близких. По этой причине наш разговор о статистике смертей может показаться излишним и бестактным. Однако наступает день, когда мы начинаем интересоваться дальнейшей своей судьбой и вопросами страховки.
Допустим, вы хотите застраховать в одну тысячу рублей свой дом от пожара, своё имущество от кражи или свою жизнь от смерти сроком на один год. То есть вы хотите, чтобы в случае, если произойдёт какая-либо из этих неприятностей, вам (или вашим наследникам) уплатили тысячу рублей. Чему должен равняться страховой взнос за год, чтобы государству (или страховой компании) имело бы смысл заключить с вами контракт?
Нетрудно сообразить, что суть дела состоит в том, чтобы знать вероятность того несчастного случая, от которого вы себя страхуете. Не всегда это простая задача. Волей-неволей страховой агент должен абстрагироваться от частностей, скажем он постарается учесть состояние вашего здоровья, чтобы отнести вас к определённой категории плательщиков. Правда, ему останется неизвестно, насколько умело и нерискованно вы водите свой автомобиль или насколько вы вспыльчивы и как часто вступаете в уличные драки. Однако, пренебрегая всем этим и многим другим, Госстрах отнесёт вас к одной из возрастных категорий, составленных на основании длительных наблюдений и о которых известна статистика смертей. Эти статистические данные сведены в таблицы «дожития». В них записано, сколько из миллиона родившихся в один и тот же год мужчин в данной категории доживают до определённого возраста. Например, во Франции в 1895 году (у меня эти таблицы под рукой, а все примеры одинаково показательны) до 40 лет доживало 717 338 человек, а до 41 года – 711 352 человека. Таким образом, вероятность сорокалетнего человека прожить ближайший год равняется 0,992, соответственно вероятность умереть равняется 0,008. Из миллиона человек до 80 лет «добралось» 166 162, до 81 года – 145 553. Вероятность прожить год с 80 до 81 уже равняется 0,876, а вероятность покинуть мир 0,124.
Чтобы вести свою работу, так сказать, «вничью», страховой организации следует определить страховые взносы по страховкам следующим образом. Меньше чем в одном случае из ста страховок придётся выплатить тысячу рублей семьям сорокалетних клиентов. Чтобы оправдать эту тысячу рублей, надо установить страховой взнос что-нибудь около 10 рублей в год за тысячу рублей страховки. Принимая во внимание, что страхование должно приносить доход, эта сумма должна быть соответственно увеличена. Страховка восьмидесятилетних стариков возможна лишь на гораздо более дорогих началах: из ста страховок уплатить придётся в среднем более чем в двенадцати случаях. Следовательно, годовой страховой взнос должен быть выше чем 120 рублей за тысячу.