Выбрать главу

Центральная часть скопления Кома. Картинка создана благодаря космическому телескопу «Спитцер» и «Слоуневскому цифровому небесному обзору».

Звучит внушительно. Но если мы попытаемся представить эти пятнадцать миллионов световых лет в перспективе, то в космических масштабах получится не очень много. Не больше размера 150 расположенных рядом Млечных Путей. А внутри этой области несколько тысяч галактик. Получается, что располагаются они довольно тесно, а значит, зависят от гравитационных сил друг друга. Это взаимное влияние и удерживает галактики вместе. Цвикки изучал, каким образом гравитационные силы в скоплениях влияют на движение самих галактик.

Я уже сравнивал скопление галактик с роем комаров. И в скоплении Кома галактики хаотично летают во всевозможных направлениях, совсем как комары. Отдельная галактика вполне может отдаляться от центра скопления с огромной скоростью, но гравитационные силы других галактик все равно окажутся сильнее, так что в конце концов она развернется и двинется внутрь. Поэтому скопление и не распадается.

Похожее явление наблюдается, когда подбрасываешь вверх камень. Теоретически камень можно подбросить с такой силой, что он улетит в космос и рано или поздно покинет Солнечную систему. На практике же это невозможно, ведь сила притяжения Земли не позволит ему настолько отдалиться. Но, допустим, что мы перенесем камень на меньшее небесное тело, например, на комету со странным названием 67Р/Чурюмова — Герасименко, которую в 2014 году исследовал космический аппарат «Розетта». Масса этой кометы в разы меньше, чем у Земли, поэтому и сила притяжения слабее. Подбрось мы камень там — и скорости в 2 км/час вполне хватило бы, чтобы он навсегда покинул комету.

Таким образом, скорость, с которой камень способен двигаться, не улетая, зависит от массы тела, откуда этот самый камень брошен. Чем массивнее тело, тем быстрее камень двигается, не рискуя исчезнуть. То же самое происходит с галактиками, движущимися в скоплении. Там за гравитацию уже отвечает не Земля или комета, а суммарная масса всех остальных галактик. Если мы измерим, насколько быстро галактики движутся, при этом не разлетаясь, то сможем узнать массу всего скопления.

Но можно добиться и большего. Вернемся к камню, который мы подбрасывали вверх. Не нужно быть гением в этом нехитром деле, чтобы заметить взаимосвязь между скоростью броска и высотой. Если начальная скорость камня — 30 км/час, то он поднимется в воздух на три с половиной метра и лишь затем начнет падать. Но и высота, на которую взлетит камень, зависит опять же от мощности гравитации. Если бросить камень с той же скоростью, стоя на поверхности Луны, он сможет подняться более чем на 20 метров. Если однажды утром вы вдруг проснетесь на неизвестном небесном теле, то подбросьте камень вверх со скоростью 30 км/час и измерьте расстояние до верхней точки. Измерение можно использовать при определении силы гравитации, а эти данные, в свою очередь, пригодятся для вычисления массы небесного тела.

Метод, которым пользовался Цвикки для определения массы скопления Кома, не сильно отличается. Понятное дело, в похожем на комариный рой скоплении галактик вряд ли найдется место, откуда удастся измерить высоту при помощи камня, но вместо этого Цвикки измерил радиус скопления галактик. Сравнивая скорости галактик (вместо скорости камня) с радиусом скопления галактик (вместо высоты), он рассчитал массу скопления. Этот расчет основывался исключительно на данных о силе гравитации скопления, независимо от его свечения. Кроме того, Цвикки измерил доходящий до нас от скопления Кома свет и использовал это для определения количества видимой светящейся в нем материи. Затем он сравнивал две вычисленных массы, основанные на гравитации и на светимости звезд. Результат превзошел все ожидания.

Согласно полученным Цвикки данным, количество материи, влияющей на гравитационные силы, в несколько сотен раз превышает количество светящейся массы. Ученый пришел к выводу, что скопление содержит большое количество субстанции, которую он по-немецки назвал dunkle Materie (Темная материя). Из расчетов Цвикки следует, что темная материя составляет более 99 процентов скопления, а обычная видимая материя — меньше одного процента.

Сегодня, более 80 лет спустя, Цвикки по-прежнему прав: в скоплении Кома содержится очень много темной энергии. Однако мнение о ее количестве существенно изменилось: если Цвикки считал, что темная материя составляет более 99 процентов, то сегодня мы, скорее, склоняемся к 90 процентам. В связи с расширением наших знаний о Вселенной, выяснилось, что и видимого вещества там вдвое больше. Таким образом, заключение Цвикки было качественно правильным, но количественно далеким от истины. В чем же ошибся Цвикки?