По мере того как ученые все больше узнают свойства «невидимых лучей», постигают последствия их действия на живые организмы и на окружающую нас природу, осваивают возможности использования этих лучей в медицине, сельском хозяйстве и промышленности — все новые и новые увлекательные задачи и проблемы открываются их взору, становятся на повестку дня и ждут своего разрешения. Остановимся только на некоторых из них.
Исключительно большой практический интерес имеет проблема одновременного действия ионизирующей радиации и ряда других физических и химических факторов окружающей нас среды. Два аспекта этой проблемы особенно злободневны. Первый заключается в возможности уменьшить разрушающее действие радиации путем одновременного воздействия другого физического или химического фактора. Проблема защиты от вредного действия радиации — одна из самых актуальных проблем в наш атомный век.
Второй аспект возник сравнительно недавно, когда были сделаны наблюдения о значительном усилении — синергизме — радиобиологических эффектов при одновременном воздействии других факторов. Проблема синергизма оказалась весьма актуальной при оценке возможных последствий загрязнения окружающей нас среды и при использовании ионизирующей радиации в медицине и промышленности. Рассмотрим несколько примеров, поясняющих подходы к решению поставленных задач и перспективность работы в этих направлениях.
В главе 5 уже говорилось, что при облучении организма в тканях, клетках возникает множество свободных радикалов, действие которых на клеточные структуры и вызывает поражающий эффект радиации. Возникла мысль ввести перед облучением безвредные для организма вещества, активно реагирующие со свободными радикалами. Они будут перехватывать эти радикалы и не дадут им возможности подействовать на жизненно важные структуры клетки — осуществится защита. Подобные вещества так и назвали — «перехватчики радикалов». Имеется ряд веществ, защищающих по этому принципу. Радиобиологи давно установили, что присутствие кислорода усиливает действие облучения — так называемый кислородный эффект. Были предложены вещества, временно снижающие концентрацию кислорода в тканях организма, т. е. вызывающие гипоксию. Оказалось, что в состоянии гипоксии организм более устойчив к действию радиации.
Чем интенсивнее идут процессы обмена, чем быстрее делятся клетки в тканях, тем чувствительней они к вредному действию радиации. Биохимикам были известны вещества, снижающие процессы обмена, замедляющие деление клеток. Оказалось, что введение этих веществ перед облучением обеспечивает защитный эффект.
В клетках и тканях организма всегда присутствуют вещества, препятствующие окислению ненасыщенных жирных кислот, которые входят в структуру клеточных биомембран. Эти вещества так и называют — «антиоксиданты». При облучении организма резко усиливаются процессы окисления ненасыщенных жирных кислот. Природные антиоксиданты не справляются со своей задачей. Нарушается структура биомембран, их проницаемость, регуляторные свойства, что углубляет вредные последствия облучения. Введение дополнительного количества антиоксидантов перед облучением — еще один путь защиты.
Приведенные примеры наглядно показывают широкие возможности использования антагонизма в действии двух факторов для успешной защиты организмов от вредного действия радиации.
Не менее интересна в теоретическом и практическом аспекте проблема синергизма. О значении этой проблемы и о том внимании, которое уделяет ей мировая наука, можно судить хотя бы по последнему международному конгрессу по радиационным исследованиям, состоявшемуся в мае 1979 г. в Японии, на котором проблеме синергизма было посвящено наибольшее количество симпозиумов, секционных заседаний; опа обсуждалась в наибольшем количестве докладов.
В центре внимания конгресса стояли вопросы возможности использовать явление синергизма для повышения эффективности радиационной терапии опухолей. Рентгеновские и γ-излучения уже давно используются в медицине для борьбы со злокачественными опухолями. Тонкий луч направляется на опухоль, он задерживает рост злокачественных клеток, разрушает их, на чем и основан терапевтический эффект. Чем больше доза, тем ярче эффект. Но врач не может увеличить дозу сверх некоторого предела, так как в этом случае начинают поражаться другие ткани больного. Как усилить воздействия на опухоль, не увеличивая дозу облучения?
Сравнительно недавно была открыта возможность использования для этой цели синергизма при одновременном действии радиации и тепла. Ученые обнаружили по ряду показателей, что ткань опухоли более чувствительна к повышению температуры (всего лишь на несколько градусов), чем нормальная ткань. Но только прогрев опухоли не давал лечебного эффекта. Однако, если одновременно с прогревом проводили лучевую терапию, то эффект значительно усиливался, проявлялось действие синергизма, что позволяло при умеренных дозах облучения получать хороший терапевтический эффект. Гипертермия при радиотерапии опухолей — еще один шаг вперед на этом трудном пути.
А вот пример использования синергизма совсем в другой области. Когда в жаркий летний день вы с удовольствием утоляете жажду стаканом фруктового сока, не приходит ли в голову мысль, а как сохраняется этот свежий сок без порчи, пока он дойдет от завода-изготовителя до потребителя?
Свежеприготовленный сок всегда содержит дрожжевые клетки и, постояв несколько дней, начинает бродить, что делает его непригодным к употреблению. Консервировать сок нагреванием до 100–110 °C (обычный способ приготовления консервов) нельзя, так как это изменяет и обесценивает его свойства. Была предложена лучевая стерилизация. Однако, чтобы убить все дрожжевые организмы, потребовались очень высокие дозы облучения — до миллионов рад — что было и дорого и ухудшало качество сока. Решить вопрос удалось, используя явление синергизма — усиление эффекта при одновременном действии тепла и радиации. Только прогрев до 50 °C не изменял его свойств, но зато повышал радиочувствительность дрожжевых клеток. Облучение при этой температуре уже при дозах 200–300 крад приводило к стерилизации сока, после чего сок хранился в течение нескольких месяцев, не теряя свойств натурального свежего напитка.
Еще один пример, где синергизм помог бы разрешить большие хозяйственно важные проблемы. Имеется в виду задача обеззараживания отходов больших животноводческих хозяйств. Это сложная проблема, если учесть, что только одно крупное хозяйство (на 100 тыс. голов) дает ежедневно около 3000 т отходов. Были предложены химические и радиационные методы обеззараживания. Однако и те и другие оказались нерентабельными из-за необходимости использовать большие количества химикатов для получения высоких доз облучения. Используя явление синергизма и здесь удалось наметить пути решения вопроса. Значительное усиление эффекта при одновременном действии химиката и радиации позволило резко снизить мощность и дозу облучения при затрате небольших количеств химикатов. В настоящее время этот метод проходит производственную проверку в одном из хозяйств Сибири.
Явление синергизма привлекает все большее внимание гигиенистов в связи с проблемой загрязнения окружающей среды. Мы подробно рассмотрели влияние малых доз ионизирующей радиации в окружающем нас мире, их небольшие изменения в будущем, лежащие в пределах колебания естественного фона. Проблема синергизма ставит новые вопросы.
Все живое на Земле подвержено влиянию множества физических и химических факторов, которые действуют одновременно с радиацией. Каковы будут последствия одновременного действия ионизирующей радиации и радиоволн различных диапазонов, ультрафиолетовых и инфракрасных излучений? Как будет влиять радиация в жарком климате па экваторе и при низких температурах Крайнего Севера? Будет ли проявляться синергизм в мутагенном действии радиации при одновременном воздействии химических мутагенов, с каждым днем все более загрязняющих окружающую нас среду? Как скажется действие малых доз радиации в условиях крупных промышленных городов, в которых воздух загрязнен выхлопными газами автомобилей, окислами азота и серы химических заводов?