Выбрать главу

Весьма серьезный недостаток древесины — ее склонность к гниению и разрушению живыми вредителями (жуком-древоточцем, термитами и т. д.). Для органических материалов гниение — всеобщий процесс. Это биологическое явление обусловлено паразитированием в древесине при определенной температуре и влажности самых разнообразных микроорганизмов. В зависимости от конкретных условий с момента поражения до полного разрушения дерева проходит от нескольких месяцев до нескольких лет.

Пожароустойчивость древесины равна нулю. Неимпрегированное дерево не только быстро загорается, но и выделяет в процессе сгорания большое количество тепла, что способствует быстрому распространению пожара. С другой стороны, древесина очень гигроскопична. С ростом влажности ее объем увеличивается, прочность уменьшается. При высыхании древесина сокращается до своего первоначального объема. Неравномерное набухание и высыхание приводят к вспучиванию и искривлению дерева, что очень сказывается на его качествах как строительного материала.

Рис 10. Сопротивление древесины в значительной степени зависит от угла, образованного направлением силового воздействия и направлением древесных волокон

С точки зрения механики природа древесины трудно поддается изучению. Основная причина этого — ее волокнистое строение. Волокна создают своеобразный скелет, в направлении которого древесина обладает наибольшей прочностью и твердостью. С увеличением угла отклонения силового воздействия от направления волокон сопротивления и модули упругости резко уменьшаются, а деформации быстро нарастают. О весьма чувствительных различиях в механических свойствах древесины при изменении этого угла может дать представление рис. 10. Показанная кривая характеризует работу элемента на сжатие. Только теперь мы сможем оценить, каким прекрасным, однородным и упругим материалом является сталь. Ведь у дерева сколько видов силового воздействия, столько и разных сопротивлений — на растяжение, на сжатие, на изгиб, на скручивание. И, что еще хуже, эти сопротивления, как и модули упругости, зависят от угла наклона относительно волокон. Поэтому расчет деревянных конструкций и их элементов весьма сложен, а точный анализ множества активных факторов просто неизбежен.

Рис. 11. Дерево, в отличие от стали, имеет несколько "удостоверений личности". Здесь показаны две его важнейшие рабочие диаграммы — на растяжение и на сжатие в соответствии с направлением волокон

Основные расчетные характеристики определяются для воздействии, параллельных и перпендикулярных направлению волокон. На основании полученных результатов можно получить и механические характеристики древесины, нагруженной под определенным углом относительно волокон. На рис. 11 показаны рабочие диаграммы древесины, подвергающейся нагрузке на растяжение и сжатие в направлении волокон. При растяжении зависимость между напряжениями и деформациями представляет собой линию, слегка изогнутую вначале. Никакой пропорциональности нет. Строго говоря, закон Гука здесь теряет силу. Бросается в глаза отсутствие какой бы то ни было площадки текучести. В конечной фазе растяжения волокна начинают быстро рваться и разрушение наступает внезапно (хрупкое разрушение) при напряжениях порядка 1000 кг/см2.

Поведение дерева при нагрузке на сжатие представляет весьма разнообразную картину. После значительного почти прямолинейного участка в связи с быстрым ростом деформаций наблюдается нечто похожее на площадку текучести у мягких сталей. Другими словами, при работе на сжатие древесина обладает ярко выраженными пластическими свойствами. Разрушение начинается с искривления самых прочных волокон в направлении более слабых; при этом на поверхности испытуемого тела образуются характерные складки. При нарастании нагрузки происходит и окончательное разрушение — при напряжениях в 2—3 раза меньших, чем в случаях работы дерева на растяжение.

Полезно сравнить рассмотренные графики с рабочими диаграммами стали. Предельная (разрушающая) деформация древесины при сжатии равна 0,6%. а при растяжении — 0,8%. По этим характеристикам дерево приближается к высокопрочным сталям, тогда как у мягких и низколегированных сталей они значительно выше. В интервале же практически целесообразных и допустимых деформаций положение обратное. За предел пропорциональности (точка, до которой остается в силе закон Гука) и при растяжении, и при сжатии принимается напряжение, равное половине предельной прочности. Оно может быть достигнуто при деформации 0,15% (сжатие) и 0,35% (растяжение), тогда как у мягких сталей рабочий диапазон простирается до деформации 0,1%. Таким образом, в реальных конструкциях дерево проявляет себя как материал более деформируемый, чем сталь.