Значимость такого рода конструкций трудно переоценить. Каркасные конструкции созданы в соответствии с образцами, рожденными природой, — почти все представители животного и растительного мира тоже имеют каркас — скелет. Более того, скелет является признаком высших биологических видов, который появился на одном из поздних этапов их эволюции. Самостоятельное выделение несущих функций среди всех остальных, будучи целесообразным и полезным, достигается при наличии подходящего материала для каркаса (скелета). В животном мире это костная ткань — материал, в основе которого лежат соединения кальция. Кость отличается от мягких тканей огромной прочностью и жесткостью. В строительстве аналогичными материалами служат сталь и железобетон. Их свойства позволяют концентрировать огромные внутренние усилия в незначительной части общего объема здания, а именно в объеме конструкции, и на предельно малой площади, какой является площадь колонн.
Статический эквивалент каркасных конструкций называется рамой. По существу, рамы — это пространственные элементы, и это имеет большое значение для их общей работы. Однако чаще всего рамы работают в основном в плоскости своих отдельных плоскостных конструкций. На рис. 23 показана схема простейшей рамы — одноэтажной однопролетной. Такая рама может использоваться, например, в конструкции промышленного здания. Система рам, поставленных параллельно одна другой на расстояниях от 6 до 12 м, образует каркас данного производственного помещения. Разумеется, рамы связаны между собой определенными элементами, так что вне плоскости схемы находятся другие рамы: стойки те же, а горизонтальные элементы расположены перпендикулярно листу. Очевидно, что речь идет о пространственной каркасной конструкции, главные рамы которой взаимно перпендикулярны (рис. 23 и 24), в связи с чем мы и обращаем на них свое внимание. Что является эффективным в их очертаниях?
Во-первых, частичное защемление балок в узлах их опирания на стойки каркаса. Изгибающий момент, который совсем не так уж мал, распределяется по всей длине балки более равномерно, чем в случае свободного опирания: в пролете растяжению подвергаются нижние слои, а вблизи стоек — верхние. Таким образом, в стойки «вводится» определенный момент, но он не имеет для них решающего значения. Важно то, что балки могут быть более стройными и экономичными.
Во-вторых, более эффективно воспринимаются горизонтальные силы (ветер, землетрясения, толчки мостовых кранов). Частичное защемление балок в верхней части стоек приводит также к перераспределению изгибающего момента в стойках по сравнению с чистой консолью, которой была бы стойка в случае отсутствия такого защемления (см. рис. 24). Иначе говоря, здесь совместно работают горизонтальные (балки) и вертикальные (стойки) элементы рамы, благодаря чему увеличивается общая жесткость конструкции и уменьшается ее вес.
Подобные жесткие угловые связи между отдельными элементами рамы не представляют проблемы для монолитного железобетона, более того, они отвечают его природе. Поэтому монолитные железобетонные конструкции оказывают значительное сопротивление внешним воздействиям, отличаются большой жесткостью и устойчивостью к землетрясениям. К сожалению, в случае сборных железобетонных и стальных конструкций положение более сложное. Там решающее значение имеют соединения между отдельными готовыми элементами. А так как выполнение жестких соединений — дело сложное, трудоемкое и требует значительных затрат времени, конструкторы во имя простоты и высоких темпов строительства отказываются от них. В таких, весьма частых, случаях балка свободно опирается на колонны, а колонны, по существу, оказываются консолями (для горизонтальных усилий). Как мы видим, при подобном компромиссе в жертву приносятся два плюса рамных конструкций.