Выбрать главу

Впервые с ее описанием мы встречаемся в американском патенте № 206112, выданном 16 июля 1878 г. на имя Тадеуша Хайата, коренного американца польского происхождения. Там мы можем прочесть: «Цементобетон — это бетон, изготовленный из цемента … в таком сочетании со сталью круглого сечения, что сталь помещается в областях, где есть растягивающие усилия». В 1885 г, та же идея была высказана немцем Кёненом.

Рис. 32. Принцип армирования: сталь концентрируется в областях, где возникают растягивающие напряжения

Действительно, главная, несущая арматура концентрируется в областях, где возникают напряжения-растяжения. Сначала методами строительной механики подробно исследуются усилия — изгибающие и крутящие моменты, нормальные и поперечные силы — и на основе полученной картины конструктор может судить о том, где в процессе эксплуатации или при аварийном состоянии могут возникнуть растягивающие напряжения. В соответствии с их величиной он определяет количество стали, которая должна быть вложена в определенные места железобетонной конструкции. На рис. 32 показаны принципиальные схемы трех наиболее распространенных железобетонных элементов — балки, плиты и вертикальной диафрагмы высокого здания. Арматура уложена со стороны растягивающих напряжений в бетоне.

Но это лишь часть правды о железобетоне. Необходимо знать, что между сталью и бетоном возникает сильное сцепление, которое практически непреодолимо вплоть до полного разрушения. А это говорит о том, что их деформации идентичны.

Рис. 33. Принцип работы железобетона основан на прочном сцеплении бетона с арматурой. При совместной деформации 0,015% бетон перестает работать, разрывается. В этот момент напряжение Арматуры составляет около 300 кг/см2. После этого трещины свободно расширяются и арматура беспрепятственно растягивается до того момента, пока в ней не возникнут соответствующие напряжения большей величины

Простейшую схему их совместной работы в зоне растяжения мы видим на рис. 33, где показаны символические представители двух материалов в виде тел длиной, равной 1, и сечением, тоже равным 1. Два тела связаны в общий блок, который одинаково их деформирует (растягивает). Таким образом символически отражается сцепление, которое является причиной одинаковых деформаций в двух материалах. Но так как у стали модуль упругости приблизительно в 10 раз больше, чем у бетона, она (в соответствии с законом Гука) при данных деформациях будет работать с растягивающими напряжениями, тоже в 10 раз большими.

В этом и заключается рациональное зерно железобетона. Предельная, разрушительная деформация для бетона при растяжении в среднем составляет 0,15 мм на метр длины. Легко подсчитать, что в этом случае (т. е. при полном использовании сопротивления бетона растяжению) в нем возникнет напряжение 30 кг/см2, а в стали, которая в 10 раз прочнее, — 300 кг/см2. Но напряжение 300 кг/см2 значительно ниже возможностей стали. Как мы помним, расчетное сопротивление арматурной стали класса A-I равно 2100 кг/см2. Следовательно, несмотря на благоприятное соотношение напряжений в бетоне и арматуре, последняя используется не полностью… Тут мы приблизились к последней части правды о железобетоне, которая предполагает небольшую, так сказать, локальную катастрофу.

Итак, при деформации около 0,015% бетон раскрывается и «тандем» перестает существовать. Теряем ли мы от этого? Нет. Значительно более растяжимая сталь беспрепятственно реализует свою деформацию и при достижении величины, которая в 10 раз больше, чем критическая у бетона, начинает работать поистине в полную силу. Для стали класса А-III, например, она составляет 3600 кг/см2. В сравнении со столь значительной величиной скромное общее сопротивление «тандема» — всего лишь 330 кг/см2 — почти что ничего не значит, но это значит, что сопротивление бетона растяжению может вообще не приниматься в расчет. Оно не только само по себе мало, но и существенно ограничивает возможности стали.

Процессы в зоне растяжения железобетонного элемента, подвергающегося изгибу, можно огрублено сравнить с элементарной физической моделью, какой является полоска бумаги с приклеенной к ней резинкой. С растяжением этой несколько смешной конструкции начинаются и деформации. Но так как бумага значительно менее растяжима, чем резинка, то в какой-то момент она рвется. С этого мгновения резинка растягивается свободно, воспринимая все большую нагрузку — во много раз больше той, которую воспринимает система «бумага — резинка».