Под микроскопом становится видно, что каждый из пяти клиньев состоит из периодически повторяющихся шестиугольных групп атомов. Следовательно, каждый отдельный клин – это кристалл, подчиняющийся всем законам кристаллографии. В целом же это пример множественно-двойникованного кристалла. То есть это просто группа кристаллов, по воле случая сросшихся пятью клинообразными фрагментами и образовавших форму, напоминающую пятиугольник. Любое твердое тело, состоящее из комбинации кристаллических клиньев, всегда считается кристаллом, вне зависимости от числа и взаиморасположения этих клиньев.
Множественное двойникование встречается повсеместно. Поэтому совершенно естественно, что коллеги Шехтмана, включая Джона Кана, были убеждены, что образец Al6Mn был просто еще одним примером этого явления. Никто не ожидал обнаружить нечто хоть сколько-нибудь необычное в ходе рутинного описания алюминиевых сплавов. Вся лаборатория просто отмахнулась от находки Шехтмана, посчитав ее ничем не примечательной.
Сам Шехтман, однако, был не согласен. Он не уступал и продолжал убеждать коллег в том, что обнаружил нечто новое. Возражая Шехтману, Джон Кан рассказал о тесте, который позволит разрешить этот спор. Кан предложил Шехтману сфокусировать электронный пучок на очень небольшом участке образца. Если тот является множественно-двойникованным кристаллом, как предполагала вся остальная лаборатория, многие пятна из десятилучевого узора исчезнут, а оставшиеся образуют рисунок с хорошо известными кристаллическими симметриями. С другой стороны, если образец действительно нарушает давно установленные принципы и обладает однородной симметрией десятого порядка, то все пятна, указывающие на десятилучевую симметрию, будут появляться независимо от того, где сфокусирован пучок.
Шехтман вернулся к своему микроскопу и провел решающий эксперимент. В какое бы место образца Al6Mn он ни смотрел, там обнаруживалась все та же невозможная симметрия десятого порядка. Это был поразительный результат, исключавший банальную версию с множественным двойникованием. История, впрочем, умалчивает, показал ли он результаты Кану или кому-то еще из коллег, прежде чем завершился его двухлетний срок работы в Америке и он вернулся в Израиль.
Известно, однако, что Шехтман не сдался. Он понял, что его открытие настолько скандально, что никто не воспримет его всерьез, пока он не предложит правдоподобного объяснения. Но он был специалистом по электронной микроскопии, а не теоретиком с сильной математической подготовкой. Так что позднее он стал работать с израильским материаловедом Иланом Блехом – в надежде, что тот создаст подходящую теорию.
Поощряемый Шехтманом, Блех предложил модель, основанную на ряде допущений. Во-первых, он предположил, что атомы алюминия и марганца могут каким-то образом объединяться в одинаковые икосаэдрические кластеры. Затем он допустил, что эти икосаэдрические кластеры соединяются в случайном порядке, когда алюмомарганцевая жидкость охлаждается и затвердевает. Далее он предположил, что все эти кластеры каким-то образом приобретают одну и ту же ориентацию по всему объему. Эта идея была сродни допущению, что десяток брошенных в чашу икосаэдрических костей из игры Dungeons & Dragons могут чудесным образом остановиться, выровнявшись вдоль одних и тех же направлений. То есть модель строилась на целой системе предположений, в числе которых были и такие, что вряд ли могли выполняться в реальном веществе.
Эта идея проиллюстрирована ниже. Наверху изображена пара примыкающих друг к другу икосаэдров с совпадающими вершинами. Внизу – приблизительное представление того, как могла бы выглядеть соответствующая случайная структура.
Рисунок демонстрирует наличие значительных пустот между икосаэдрами, когда большое их число соединяется вместе в соответствии с идеями Блеха. Мы с Довом столкнулись с той же проблемой, когда пытались строить кластеры из пенопластовых шариков и каркасной проволоки. Мы уже знали, что пустые зазоры представляют собой большую проблему, поскольку в реальности они пустыми не остаются. Нет никакой возможности помешать атомам двигаться и заполнять зазоры в процессе остывания жидкости. А затем эти атомы начнут оказывать колоссальное давление на икосаэдрические кластеры и разрушать их аккуратное выравнивание. Это было одной из причин, по которой мы с Довом в итоге отвергли идею использования икосаэдрических кластеров в качестве строительных блоков. В нашей квазикристаллической модели использовались ромбоэдры, которые можно упаковывать без всяких зазоров.