На Рис. 6 и 7 показана другая форма разрядника, используемого в этих и схожих с ними экспериментах. Он состоит из множества латунных элементов С С (Рис. 6), каждый из которых имеет сферическую среднюю часть m, продолговатую нижнюю часть е, — она служит только для крепления детали в токарном станке во время полировки разрядной поверхности, — и верхнюю часть. Верхняя часть состоит из выпуклого фланца f, заканчивающегося стрежнем l с резьбой. На него навинчивается гайка n, при помощи которой к верхней части разрядника крепится провод. Фланец f служит, чтобы держать латунную деталь когда крепится провод, а также для поворачивания в любую сторону, когда нужно подставить свежую разрядную поверхность. Две толстые резиновые полоски R R (Рис. 7) с желобками g g, вырезанными под средние части С С деталей, служат для более плотного закрепления деталей в своем положении при помощи двух болтов С С (на рисунке представлен только один из них), проходящих через концы резиновых полосок.
Я обнаружил три очень важных преимущества, которые дает использование такого типа разрядника по сравнению с разрядником обычной формы. Во-первых, если вместо одного воздушного зазора есть множество мелких, то диэлектрическая прочность воздушного промежутка той же суммарной толщины значительно возрастает, что позволяет работать с меньшей длиной воздушного зазора, а это означает меньшие потери и меньший износ металла. Во-вторых, по причине разделения одной большой дуги на множество меньших дуг полированные поверхности служат значительно дольше. И в-третьих, этот аппарат позволяет выполнять определенную калибровку в ходе экспериментов. Обычно я при помощи листов однородной толщины выставлял элементы на определенном очень маленьком расстоянии, для которого из экспериментов сэра Вильяма Томсона известна определенная электродвижущая сила, требующаяся для искрового пробоя через него.
Разумеется, следует помнить, что с увеличением частоты значительно уменьшается искровой промежуток. Беря любое количество зазоров, экспериментатор получает грубое представление об электродвижущей силе и может легче повторять эксперимент, поскольку без проблем может вновь и вновь выставлять зазор между набалдашниками. При помощи разрядника такого тина мне удавалось поддерживать колебания, при которых невооруженным глазом никаких искр между набалдашниками не наблюдалось, и не происходило сильно ощутимого повышения их температуры. Оказалось также, что такая форма разрядника хорошо подходит для использования во множестве схем с конденсаторами и цепями, которые часто очень удобны и экономят время. Я в основном использовал его в схемах, схожих с представленным на Рис. 2, когда образующие дугу токи малы.
Здесь можно было бы упомянуть опробованные мной разрядники с одним или со множеством воздушных зазоров, у которых разрядные поверхности с большой скоростью вращались вокруг своей оси. Однако этот метод не дал никаких особенных преимуществ, за исключением тех случаев, когда токи от конденсатора были большими, и нужно было поддерживать разрядные поверхности холодными, а также в случаях, когда разряд сам не осциллировал, и дуга, как только она устанавливалась, прерывалась потоком воздуха, тем самым приводя к быстрой последовательности колебаний. Я также применял многочисленными способами и механические прерыватели. Для избежания трудностей с фрикционными контактами в была подобрана следующая предпочтительная схема: установить дугу и вращать через нее с большой скоростью слюдяной обод с большим количеством отверстий, закрепленный на стальной пластине.
Понятно конечно, что использование магнита, потока воздуха, или другого прерывателя производит достойный упоминания эффект, только если между самоиндукцией, емкостью и сопротивлением нет такого соотношения, что есть колебания, которые устанавливаются после каждого прерывания.
А сейчас я постараюсь показать Вам некоторые из наиболее интересных среди этих разрядных явлений.
Я натянул вдоль комнаты два обычных провода, покрытых хлопковой изоляцией, каждый длиной около 7 метров. Они поддерживаются на изолированных шнурах на расстоянии примерно 30 сантиметров. А сейчас я подключаю к каждому выводу катушки один из проводов и включаю ее. Если в комнате выключить освещение, то Вы увидите, что провода ярко освещены потоками света, исходящими изо всей их поверхности проводов несмотря на хлопковую изоляцию, которая даже может быть довольно толстой. Если эксперимент проводится при хороших условиях, то интенсивность света от проводов позволяет различать предметы в комнате. Для наилучшего результата, разумеется, нужно тщательно отрегулировать емкость банок, дугу между сферами и длину проводов. По своему опыту могу сказать, что в данном случае расчет длины приводов не дает вообще никакого результата. Самое лучшее, что может сделать экспериментатор, это изначально взять провода очень большой длины и постепенно отрезать от них куски, сначала длинные, затем меньше и меньше — до тех пор, пока не дойдет до правильной длины.