74
АЛГЕБРА ЛОГИКИ ниями буквенных переменных) и системы операций над объектами этого множества, удовлетворяющих тождествам из полной системы тождеств этого «языка». «Язык» КДО в результате такого шага абстракции превращается в «язык» т. н. булевой алгебры, «язык» УСЕ - в «язык» т. н. дистрибутивной структуры. Важным примером булевой алгебры является алгебра классов, в которой роль элементов играют подмножества (классы) некоторого фиксированного множества (т. н. универсума) ?/, роль О играет пустое множество 0, роль 1 - само U, роль AB, AvB и -Л ~ теоретико-множеств. операции пересечения, объединения и дополнения соответственно. Связь между алгеброй классов, алгеброй предикатов и алгеброй высказываний, этими тремя важнейшими интерпретациями абстрактной алгебры логики как «языка» булевой алгебры, состоит в следующем: первая переходит во вторую путем замены множеств (классов) их т. н. характеристическими предикатами (т. е. множества А - предикатом хеА, гласящим: «х принадлежит множеству А»), если при этом соответствующим образом преобразуются также операции и константы 0 и 1, а вторая переходит в третью при подстановке во все предикаты на место их аргументов некоторого фиксированного их значения. Вернее, при таком переходе от алгебры классов к алгебре предикатов получается алгебра одноместных предикатов. Другим важным случаем является алгебра двуместных предикатов, называемых чаще отношениями. С ней тесно связана алгебра отношений, отличающаяся от нее только тем, что в последней, кроме трех операций булевой алгебры, имеются еще две. Всякую булеву алгебру можно «переделать» в булево кольцо, определив операцию А+Всогласно закону X (и отбросив операцию AvB). Напр., в случае алгебры множеств роль А+В играет т. н. симметрическая разность множеств А и В (состоящая из всех тех элементов универсума, которые принадлежат одному и только одному из множеств А или В). Обратно, всякое булево кольцо (с единицей) можно «переделать» в булеву алгебру. Понятия булевой алгебры и булева кольца связываются с именем Дж. Буля. Однако оформились эти понятия (не говоря уже о терминах) значительно позже. Первые работы по алгебре логики были посвящены задачам: а) выражения логических соотношений между объемами понятий (соответственно высказываниями) в виде уравнений (равенств), б) построения алгоритмов решения логических уравнений и систем уравнений с целью автоматизировать способы извлечения из данных посылок содержащейся в них (неявно) информации (того или иного рода). В настоящее время алгебра логики развивается гл. о. под влиянием задач, встающих в области ее приложений. Она находит широкое применение в технике (особенно при решении задач, связанных с построением автоматов) и, наоборот, развивается сама под влиянием запросов техники (задач автоматизации программирования, уменьшения числа элементов в устройствах релейного действия и др.). Важную роль играют приложения в теории электрических схем, включая первоначально, начиная с работ В. И. Шестакова и К. Шеннона (30~40-е гг. 20 в.), теорию релейно-контактных схем. Вопросы, касающиеся понятий самой алгебры логики, приводят к проникновению в алгебру логики неалгебраических методов (таких, как табличные, топологические, дескриптивные) и вследствие этого к постепенному вьшелению из алгебры логики самостоятельной области - теории функций алгебры логики (или иначе, теории булевых функций). В случае более сложных схем, чем контактные, приходится часто отказываться от использования лишь обычной алгебры логики и рассматривать те или иные ее многозначные обобщения, отличные от булевых алгебр и булевых колец (см. Многозначные логики). Другим направлением современного развития алгебры логики является алгебраическая логика. Она интересна тем, что выдвигает и частично решает задачу построения алгебр неклассических логик, т.е. таких вариантов алгебры логики, которые соответствуют неклассическим исчислениям высказываний. Некоторые тенденции возможного дальнейшего развития алгебры логики как совокупности алгебраических методов логики намечаются в связи с бурным развитием ряда областей как современной алгебры, так и математической логики. Одна из них связана с мощным ростом теоретико-множественной алгебры, позволяя всякую операцию рассматривать как алгебраическую операцию. Такое рассмотрение дает возможность охватить алгебраическими методами значительную часть современной математической логики (см. Логика символическая). Другая - связана с успехами теории алгоритмов, позволившей уточнить ряд алгоритмических проблем алгебры, и последовавшим решением некоторых из них. Тенденция эта состоит в объединении алгоритмической алгебры с самой теорией алгоритмов м попытках алгебраизации последней, т.е. построения алгебраической теории алгоритмов. Эта постепенная алгебраизация все большего числа сторон математической логики будет, по-видимому, содействовать наилучшему вьшелению и ее чисто логических сторон, для того чтобы изучать последние уже иными методами. А В. Кузнецов Сокращенный вариант статьи: Алгебра логики. — В кн.: Философская энциклопедия. Т. 1. М., 1960. Как и предвидел А. Кузнецов, все большее прикладное значение приобретает теория булевых функций как самостоятельная область, выделившаяся из алгебры логики. В результате пришли к понятию функциональной системы (Рп, Q, где Рп есть множество всех функций л-значной логики (или множество всех функций счетнозначной логики PJ с заданной на нем операцией суперпозиции С. Рп обычно рассматривается как обобщение множества всех булевых функций Рт Известна содержательная трактовка понятия функциональной системы ((Рп, Q выступает ее частным случаем), в основе которой лежит рассмотрение таких пар (Р, П), в которых Р есть множество отображений, реализуемых управляющими системами из некоторого класса, a ? состоит из операции, используемой при построении новых управляющих систем из заданных. В свою очередь (Pv С) есть эквивалент алгебры логики. Таким образом, от алгебры формул, изучаемой в алгебре логики, перешли к алгебре функций. И хотя именно алгебра логики, т.е. классическая логика высказываний, лежит в основе проектирования микросхем для современной цифровой электронной техники, в том числе и для компьютеров, подобные работы ведутся и на основе многозначных логик. В частности, для функционально полных (и некоторых других) многозначных систем был построен аналог совершенной днф. Еще более важное предвидение А. Кузнецова связано с выделением алгебраической логики в одно из направлений современной алгебры логики. В первую очередь имеется в виду построение алгебр, соответствующих неклассическим логикам в том смысле, в каком булева алгебра соответствует классической логике высказываний (Rasiowa, 1974). Здесь существенным является также вопрос о построении алгебраической семантики, под которой понимается класс всех моделей некоторой алгебры, соответствующей логике L, поскольку посредством алгебраической семантики решаются такие металогические проблемы, как полнота L (относительно общезначимости в классе всех моделей), разрешимость L и др. В итоге пришли к общему вопросу о том, какая логика алгебраически представима, т.е. имеет алгебраическую семантику, а какая нет. Ответ на этот вопрос дан в работе В. Блока и Д. Пигоцци (Blok, Pigozzi, 1989). Существенно, что современное развитие алгебраической