К вопросам о жизни на Земле можно добавить еще несколько: каково самое простое соединение атомов, которое можно назвать живым? Какова самая простая форма жизни на Земле? И что ей необходимо, чтобы остаться живой? Чтобы ответить на эти вопросы, нам необходимо понять, что требуется текущим формам жизни на планете для обретения и поддержания того состояния, которое мы выше определили как «живое». А для этого мы кратко опишем всю ту химию, которая вовлечена в процессы обретения и поддержания жизни.
Неживые составляющие земного живого организма
Из всех веществ, необходимых для жизни, нет более важного, чем вода, причем вода в одном состоянии — жидком, не в твердом (лед) и не в газообразном (пар). Земная жизнь состоит из молекул, купающихся в жидкостях. Вообще, хотя в жизненных формах можно найти много больших неустойчивых молекул, на самом деле в основном жизнь использует только четыре основных типа: липиды, углеводы, нуклеиновые кислоты и белки — и все они либо погружены в жидкость (в живом организме — в воду с растворенными солями), либо служат внешними стенками для содержания молекул и воды.
Липиды, жиры, являются ключевыми ингредиентами для клеточных мембран. Они водоустойчивые из-за множества атомов водорода, но содержат мало кислорода и азота. Липиды — основные компоненты клеточных границ, стенок, которые разделяют внешнюю среду и внутреннее пространство клетки, которую мы называем живой. Эти мембраны очень тонки, они контролируют проникновение веществ в клетку и выделение веществ из нее.
Углеводы — второй важнейший тип структур, из которых состоит жизнь, их по-простому называют сахара. Соединив их «цепочкой», мы получим полисахарид, то есть «много-сахарид». Углеводы, один он или их много, являются важным строительным материалом, поскольку обладают способностью соединяться друг с другом или с другими органическими и неорганическими молекулами и образовывать молекулы большего размера.
Сахара весьма значимы еще и потому, что являются строительным элементом для следующего типа жизненных молекул — нуклеиновых кислот. Представители этой группы хранят генетическую информацию каждой клетки. Это — молекулы-великаны, в которых объединены сахара и азотсодержащие соединения, называемые нуклеотиды, которые в свою очередь созданы из меньших единиц-оснований, фосфора и других сахаров. В такой структуре самыми важными являются основания — именно они и становятся «буквами» генетического кода.
ДНК и РНК — сахара, которые из всех важных молекул жизни занимают самое главное место. ДНК, имеющая два «позвоночника» (знаменитая «двойная спираль», описанная ее открывателями, Джеймсом Уотсоном и Фрэнсисом Криком), является системой хранения информации самой жизни. В ДНК встречается четыре вида азотистых оснований: аденин, гуанин, тимин и цитозин. Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Порядком пар обеспечивается язык жизни — это гены, которые кодируют сведения о той или иной форме жизни.
ДНК — носитель информации, а РНК? А РНК имеет только одну цепочку и является слугой для ДНК — приводит информацию в действие, или обеспечивает производство белков. Молекулы РНК схожи с ДНК, имеют спираль и основания, но отличаются обычно (но не всегда) тем, что спираль только одна.
Почему ДНК и РНК так сложно устроены? Дело в том, что информация нужна как для первичного строительства («закладка фундамента»), так и для дальнейшего решения и выполнения множества прочих задач, для того чтобы «здание» оставалось живым. ДНК — это инструкция по сборке, строительству, ремонту, а также по производству копий самой себя и всего, что в ней есть закодированного. Согласно компьютерной терминологии ДНК — это «программное обеспечение», она несет в себе информацию, но выполнять предписанное этой информацией сама не может. А белки можно принять за компьютерное «железо», аппаратное обеспечение, оно нуждается в «софте», который указывает, когда и где должны произойти те или иные химические изменения, чтобы произвести материалы, необходимые для жизни РНК имеет интересное свойство быть как программным, так и аппаратным обеспечением, а в некоторых случаях — и тем и другим одновременно.
Белок, последний из обсуждаемых ключевых материалов, имеет четыре функции для земной жизни: строительство других больших молекул, ремонт других молекул, перемещение материалов и обеспечение энергетических запасов. Белки также преобразовывают большие и малые молекулы для самых разнообразных целей и служат средством сигнализации между клетками. Существует огромное количество разнообразных белков, и мы только еще изучаем, как они работают и что именно они делают. Новым открытием, например, является то, что в выполнении своих функций для белка очень важна его схема, структура.
Все белки на Земле строятся на основе одних и тех же двадцати аминокислот. В начале XXI века мы задаем себе все тот же вопрос: эти постоянные 20 кирпичиков используются потому, что являются самым удобным строительным материалом, или потому, что они были обычным материалом в тот момент, когда возникла жизнь, а потом стали постоянно копироваться жизненными формами? Кажется, скорее всего, причиной послужило первое — они самые лучшие, по крайней мере, согласно исследованиям 2010 года[48]. Эта группа из 20 аминокислот является специфичной для Земли и, вероятно, признаком жизни именно на Земле.
Белки конструируются в клетках нанизыванием различных аминокислот в одну длинную линейную цепочку, которая в своем окончательном виде сворачивается, лишь когда все аминокислоты оказываются в ней на своих местах. Иногда белковая цепочка сворачивается в момент своего создания. Поскольку создание белка происходит добавлением аминокислот по одной в линейном специальном порядке, этот процесс часто сравнивают с построением письменного предложения, роль слов в котором играют аминокислоты.
Клетка, покрытая мембраной, полна разных молекул, объединенных в стержни, шары и листы, и все плавают в соленом растворе. В клетке насчитывается около 1000 нуклеиновых кислот и более 3000 разных белков. Все они участвуют в химических реакциях, которые, объединяясь, создают процесс, называемый жизнь. В этой однокомнатной квартирке может происходить множество химических процессов одновременно.
В клетке также находятся около 10 000 отдельных шаров, известных как рибосомы, которые довольно равномерно распределены по внутриклеточному пространству. Рибосомы состоят из трех определенных типов РНК и около 50 видов белков. Также в клетке есть хромосомы, длинные цепочки ДНК, к которым присоединяются специальные белки. ДНК в бактериях обычно расположены в одной части клетки, но не отделены от прочих внутриклеточных элементов мембраной, как это бывает у высших жизненных форм — эукариотов, в клетках которых есть ядро. Спрашивается, что же в клетках «живое»?
Современное представление «дерева жизни». Затемненные области обозначают организмы, выживающие при высоких температурах. На нем отсутствуют многие виды организмов и «до-организмов», предположительно развившихся из неорганических химических элементов и образовавших первую живую клетку.
Бактерия состоит из неживых молекул. Молекула ДНК определенно неживая в любом смысле, который может представить себе здравомыслящий человек. Клетка сама по себе содержит многие множества химических механизмов, каждый из которых по отдельности является неживой химической реакцией. Возможно, клетка жива только как единое целое. Если нам суждено узнать, как возникла жизнь в самом начале, нам необходимо будет найти клетку с наименьшим набором молекул и реакций, которые обеспечивают жизнь.
48
Ник Лэйн — человек точных суждений, который борется с предрассудками. Он хорошо описал сложный вопрос понимания энергии. N. Lane, «Bioenergetic Constraints on the Evolution of Complex Life,» in P. J. Keeling and E. V. Koonin, eds.,