Выбрать главу

— Есть. В наши дни слово это звучит совсем по-другому. Внести свою лепту — значит, по-нашему, вложить свой труд, свою долю в какое-нибудь общеполезное дело.

— Потому-то, наверное, Магистр и сказал, что все отдельные лепты сложились под конец в одну огромную лептищу.

— Только пошла она не на общеполезное дело, а в карман жуликам, — заметил Сева.

— Лепта-нелепта, — сострил Нулик и сам же первый засмеялся.

— Повеселились, и будет! — остановила его Таня. — Мало высмеять Магистра, — надо ведь ещё разделить эту лепту на пять частей! И не как-нибудь, а так, чтобы они относились, как последовательные нечётные числа, то есть как 1 : 3 : 5 : 7 : 9. Единичка начала с того, что разделила радиус круга на пять равных частей.

— А Магистр ей вовремя помещал, не то не сносить бы ей головы! — сказал Нулик.

— Единичка делила совершенно правильно, за что ж ее казнить? — возразила Таня. — Если через точки деления радиуса провести из центра круга четыре концентрические окружности, то круг разделится на пять частей, относящихся друг к другу, как 1 : 3 : 5 : 7 : 9.

— А как ты это докажешь? — спросил Нулик, оседлав своего любимого конька.

— Сейчас увидишь. Примем радиус внутреннего маленького круга за единицу и вычислим его площадь по формуле πr2. Что мы увидим?! Мы увидим, что площадь этого круга равна π ведь единица, возведённая в квадрат, так и останется единицей, а коэффициент единица, как мы знаем, не пишется.

— Убедительно! Но как ты вычислишь площадь кольца, следующего за внутренним кругом?

— Очень просто. Единичка разделила радиус большого круга на пять равных частей. Значит, если радиус малого круга принят нами за единицу, то расстояния между всеми соседними концентрическими окружностями тоже равны единице. И для того чтобы вычислить площадь соседнего с малым кругом кольца, надо вычислить разность площадей двух кругов: одного с радиусом, равным двум, и другого — с радиусом, равным единице. По той же формуле πr2 площадь круга с радиусом два равна 4π. Вычитаем из 4π площадь малого круга — π — и получаем 3π.

— Все равно что вычесть из бублика его дырку, — снова сострил Нулик.

Его неожиданное и точное сравнение насмешило всех, даже строгую Таню.

— Нагляднее не придумаешь! — сказала она. — И потому остальное решай сам.

— С удовольствием! Из площади круга с радиусом, равным трём, вычтем площадь круга с радиусом, равным двум. Получим 9π — 4π = 5π. Теперь тем же макаром найдём площадь предпоследнего кольца 16π — 9π = 7π, а там — и последнего 25π — 16π = 9π. Что и требовалось обнаружить! Площади пяти частей круга равны π, Зπ, 5π, 7π и 9π.

— И, значит, относятся они, как 1 : 3 : 5 : 7 : 9, — подытожила Таня. — Так что казнить Единичку не за что!

— Но ведь её могли казнить ни за что ни про что! — возразил президент. — Этот антипод Альбертини-Джерамини такой негодяй!

— Что негодяй — не спорю, — согласился Олег. — Но только не антипод.

— Думаешь, антипод для него слишком сильно сказано? — спросил Нулик.

— С чего ты взял, что антипод — слово оскорбительное? Антиподами называют людей, живущих на противоположных точках земного шара. Вот, например, жители Европы и жители Америки — антиподы.

— Антипод, антипод, — со смешком повторил про себя Нулик. — Чудное слово.

— Ничуть! — сказал я — Обычное греческое слово, состоящее из двух частей: анти значит «против», а подос — «нога».

— Ой, не могу! — закатился Нулик. — Выходит, американцы ходят кверху ногами?

— С точки зрения географической и по отношению к европейцам — да. Ведь земля — шар! Но вообще-то слово «антипод» больше употребляется в смысле переносном. Так называют людей с противоположными взглядами и характерами. Так что по отношению к Альбертини и Джерамини слово «антипод» никак не применимо — ни в прямом, ни в переносном смысле: ведь это один и тот же человек!»

— Время, время! — сказала Таня, озабоченно взглянув на часы. — Уж очень мы распространяемся. Переходим к задаче мини-Джерамини.

— Какая же это задача? — возразил Нулик. — Сразу видно, что Магистр просто пошутил или забыл правила деления. Разделить 48 на 8 и получить 51!

— Да, — согласился Сева, — это уж не математика, а цирковой трюк. Давайте лучше выясним, сколько времени отдыхал Мини на взморье.

— Вы как хотите, а я этой задачи не раскусил! — сознался Нулик.

— Ни раскусывать, ни закусывать здесь нечего, — сказал Сева. — Разве что запивать. Такие задачи только и решать, что за чашкой кофе!