Политологи Михаил Мягков (Орегонский университет), Питер Ордешук (Калифорнийский технологический институт) и Дмитрий Шакин (Академия народного хозяйства, Москва) попытались разработать такую методику, которая позволяла бы выявлять фальсификации путем математического анализа официально публикуемой избирательной статистики. Речь не идет о безусловных доказательствах, предупреждают они в своей книге, вышедшей в мае 2009 года в издательстве Кембриджского университета (Источник: Mikhail Myagkov, Peter C. Ordeshook, Dmitry Shakin. The Forensics of Election Fraud: Russia and Ukraine. Cambridge University Press, 2009). Жизнь сложнее любого математического анализа, и явлениям, выявленным с помощью их методики, можно найти альтернативное объяснение. Однако даже в суде исход процесса редко зависит от одного безусловного доказательства, виновность можно доказать и на основании множества косвенных улик, добытых криминалистами. Мягков, Ордешук и Шакин сравнивают себя именно с такими криминалистами.
Впервые в России попытку применить методы математического анализа для выявления фальсификаций на выборах предпринял профессор Александр Собянин, проанализировавший результаты референдума 1993 года (А. Собянин, Е. Гельман, О. Каюнов. Политический климат в российских регионах. Избиратели и депутаты, 1991–1993; The Soviet and Post-Soviet Review, 1994). На тот момент, однако, результаты выборов по районам и избирательным участкам были недоступны, и исследователям пришлось оперировать неполными данными, собранными из самых разных источников. В 2008 году российский математик Сергей Шпилькин применил методы, похожие на те, которыми пользуются Мягков, Ордешок и Шакин, для анализа президентских выборов 2008 года. Согласно его подсчетам, не поддается логическому объяснению 14,8 млн из 52,5 млн голосов, полученных на тех выборах Дмитрием Медведевым.
Исследователи исходят из того, что непосредственно фальсификацией выборов занимается региональное руководство и что их возможности и желание подтасовывать результаты колеблются от региона к региону. В идеальном случае динамика изменения официальных результатов последовательно проводимых выборов на уровне субъектов Федерации и отдельных районов должна обладать внутренней логикой и последовательностью. Если логики и последовательности нет, это означает, что выборы фальсифицируются, ведь в разных регионах подтасовки проводятся с разным успехом.
Методика Мягкова — Ордешука — Шакина основана на нескольких простых допущениях. С помощью специальных математических методов ученые анализируют возможные объемы перетока избирателей от одних партий (кандидатов) к другим. Если количество голосов за кандидата выросло, должна существовать общая для всей страны модель, последовательно и правдоподобно объясняющая, откуда взялись эти голоса.
Кроме того, должна обнаруживаться зависимость между уровнем явки и количеством голосов, полученных партиями или кандидатами. Например, если в выборах участвуют партии А и Б, а явка выросла по сравнению с прошлыми выборами на Х процентов, то должно вырасти и количество голосов, поданных за обе партии: не может быть, чтобы весь прирост пришелся на сторонников только одной из них.
Наконец, следует обратить внимание на то, как колеблется уровень явки по стране: если явка зависит от естественных факторов, наблюдается то, что математики называют нормальным распределением. На основной массе участков уровень явки должен приближаться к уровню по стране в целом, а доля участков с повышенной и пониженной явкой должна быть примерно равна. Кроме того, доля участков с явкой, отклоняющейся от общего уровня, должна быть тем меньше, чем выше отклонение. Если на одной оси системы координат откладывать показатели явки, а на другой — количество участков с этими показателями, образуется симметричная фигура, похожая на колокол. Появление у «колокола» второго «горба» означает, что мы имеем дело с двумя совокупностями участков — теми, где уровень явки действительно определяется естественными факторами, и теми, где явка фальсифицирована.
Особенно удобны для анализа с помощью подобной методики ситуации, когда за одними выборами сразу следуют другие, причем чем меньше временная дистанция, тем лучше: меньше шансов, что политические настроения, экономическая ситуация или демографическая структура населения значимо изменились. Оптимальный случай — это президентские выборы 1996 года, проходившие в два раунда с минимальным разрывом.