Также мы можем спроектировать такой технологической переход, который позволит не упускать людей из виду или, по крайней мере, предоставит им выбор. Например, Toyota продвигает автомобили с большим уровнем роботизации, начиная с режима «личный водитель» (который требует минимального контроля со стороны водителя) и заканчивая режимом «хранитель» (при котором компьютерные системы автомобиля сосредоточены на избегании аварий, тогда как самим транспортным средством управляет человек)[12]. На самолетах автопилоты работают уже многие десятилетия, однако у коммерческих перевозчиков в рубке обычно все еще находится по меньшей мере два человека. Даже обычный авиапассажир может быть благодарен за то, что сторонники полной автоматизации пока не стремятся избавиться от пилотов[13].
Заметим, что транспорт – одна из наиболее простых областей применения ИИ. Как только пункт назначения задан, спорить о траектории путешествия нет смысла. В других областях все наоборот: клиент или потребитель может передумать. Ученики в классе в весенний денек могут оказаться слишком непоседливыми, чтобы раз за разом повторять таблицу умножения. Модник может вызвать своего дизайнера интерьеров, расстроившись из-за того, что выбранная им для гостиной гравюра оказалась слишком аляповатой. Тренер может засомневаться в том, нужно ли клиенту, который выглядит слишком уставшим, бежать по беговой дорожке еще минуту. В каждом из этих случаев самое главное – это коммуникация, а также проявляемые при общении людей навыки терпения, размышления и различения[14].
Конечно, если тысячи тренеров вооружатся Google Glass и запишут все свои встречи, наверно, соберется какая-то божественная база данных из гримас и выпученных глаз, ругательств и триумфов, которая сможет определить оптимальный ответ уставшему бегуну. Но даже если просто задуматься о том, как построить такую базу данных, о том, что должно оцениваться как положительный или отрицательный результат и в какой мере, тут же придет осознание ключевой роли, которую люди будут играть в создании и поддержании ИИ и роботов в любом правдоподобном сценарии будущего. Искусственный интеллект так и останется искусственным, поскольку он всегда будет плодом человеческого сотрудничества[15]. Более того, большинство недавних достижений в ИИ нацелены на решение строго определенных задач, а не на выполнение работ как таковых или социальных ролей[16].
Существует много примеров технологий, которые позволяют повысить производительность рабочих мест, сделать их более интересными или допускают и то, и другое. Агентство цифрового развития Италии отметило: «Технология часто заменяет не профессионала целиком, а лишь некоторые конкретные действия»[17]. Современные студенты-юристы едва ли могут поверить, что до интернета их коллегам приходилось перелопачивать пыльные тома, чтобы оценить обоснованность того или иного дела; поисковые программы значительно упрощают этот процесс и значительно расширяют список ресурсов, доступных в судебном разбирательстве. Нисколько не упрощая задачу, они могут, наоборот, значительно ее усложнить[18]. Если на поиск по книгам тратится меньше времени, а на интеллектуальный труд, в котором создается общая картина дела, – больше, для адвокатов это прямая выгода. Автоматизация может дать похожий прирост производительности и многим другим работникам, что не обязательно ведет к замене их труда. И это не просто наблюдение. Это вполне состоятельная цель программы развития[19].
12
Lucas Mearian, “A. I. Guardian-Angel Vehicles Will Dominate Auto Industry, Says Toyota Exec,”
13
Некоторые формы автопилотирования снижают квалификацию пилотов. См.: Николас Карр,
14
Так, даже фирмы, составляющие витрину революции ИИ, в частности Microsoft, утверждают, что их цель «не в том, чтобы заменить людей машинами, а в том, чтобы дополнить человеческие способности безграничной способностью ИИ анализировать огромные объемы данных и находить паттерны, которые в ином случае выявить было бы невозможно». См.: Microsoft, “The Future Computed: Artificial Intelligence and Its Role in Society” (2018), https://blogs.microsoft.com/wp-content/uploads/2018/o2/ The-Future-Computed_2.8.18.pdf.
16
Information Technology Industry Council (ГП), Al Policy Principles Executive Summary 5 (2017), https://www.itic.org/public-policy/ ITIAIPolicyPrinciplesFINAL.pdf.
18
Frank Pasquale, “A Rule of Persons, Not Machines,”
19
Beijing Academy of Al, Beijing Al Principles (2019), https://www. baai.ac.cn/blog/beijing-ai-principles.