Выбрать главу

Процессор, каким бы маленьким он ни был, не может быть меньше одного атома. Сегодня самая передовая технология производства процессоров — 32-нанометровая — уже отличается от размера атома всего на три порядка — 1000 размеров атома. «Intel» заявила, что к 2017 году компания перейдет на 10-нанометровую технологию, но это уже точный предел для существующих решений.

Сигнал между транзисторами не может распространяться со скоростью, превышающей скорость света, а значит, есть предел для роста скорости обмена данными.

При размерах порядка нанометра заряженные частицы начинают «просачиваться» через закрытые переключатели, возникает «туннельный ток», и уже нельзя уверенно сказать, закрыт переключатель или открыт. Это чисто квантовый эффект, не имеющий аналогов в классическом мире, и связан он с тем, что заряженная частица — не частица вовсе, а волна информации, и при квантовых размерах локализовать ее положение с любой точностью нельзя.

Существует и еще одна принципиальная трудность — это отвод тепла. Работающий процессор нужно охлаждать, а это тоже возможно только до определенного предела. Еще в 1961 году сотрудник «IBM» Рольф Ландауэр сформулировал принцип, согласно которому в любой вычислительной системе, независимо от ее физической реализации, при стирании 1 бита информации выделяется теплота. Это происходит просто потому, что при стирании информации она теряется безвозвратно, а значит, увеличивается энтропия системы и неизбежно выделяется тепло. В начале 1960-х на этот принцип не обратили внимания — количество тепла показалось совершенно ничтожным; сегодня эта проблема стала одной из самых трудных.

Крупнейшие производители процессоров, и в первую очередь «Intel», отказались от наращивания тактовой частоты и перешли к реализации многоядерных решений, то есть фактически стали встраивать в компьютер не один процессор, а два или четыре. Но, во-первых, не все алгоритмы можно эффективно распараллелить, чтобы на двух процессорах они работали быстрее, чем на одном, а во-вторых, взаимодействие процессоров — это большие накладные расходы. Попросту говоря, два процессора работают не в два раза быстрее, чем один, а, скажем, в 1,8 раза. Причем чем процессоров больше, тем прирост будет менее значительным. То есть здесь тоже ясно виден предел. Но пока еще есть куда расти.

 

Зачем нам нужны все более быстрые и мощные компьютеры? Нельзя ли ограничиться теми, что есть? Ответ однозначный: даже в среднесрочной перспективе уже нельзя. Это связано с лавинообразным ростом количества цифровой информации и количества пользователей и производителей этой информации. Буквально шесть лет назад, в феврале 2005 года, когда появился Youtube, никто не подозревал, что количество видеоинформации будет расти с такой поразительной скоростью. И это только небольшая часть цифровой информации, которая создается и передается по глобальной сети. Хотя количество людей на Земле сравнительно невелико, количество устройств и сервисов, использующих цифровую информацию, ничем не ограничено. Если сегодня перестать наращивать цифровые мощности, встанет Сеть. Последствия могут быть катастрофическими. Но это только одна из проблем. Мы ведь хотим продолжать теми же темпами (а хотелось бы и побыстрее) познавать и конструировать природу, в частности, попытаться конструировать работу мозга, а без взрывного роста вычислительной мощности это невозможно.

 

В 1982 году Ричард Фейнман опубликовал статью [8] , в которой предложил использовать принципиально новый физический принцип для вычислительных систем. Эту статью считают началом квантовых компьютеров.

Ричард Фейнман, анализируя проблему моделирования квантовых явлений, пришел к выводу, что моделирование таких явлений на реальных компьютерах при ограничении времени практически невозможно и не будет возможно в обозримой перспективе. Но вместо того чтобы считать трудность обработки квантовых явлений препятствием, Фейнман счел ее новой возможностью. Действительно, чтобы узнать исход эксперимента, необходимо выполнить невообразимо много вычислений. Но если мы поставим эксперимент, то сам факт его проведения и измерения его результатов будет равносилен выполнению сложного вычисления. То есть вместо того, чтобы считать, мы можем поставить эксперимент и «снять» результат, тогда мы как бы заглянем в ответ. И сам эксперимент станет своего рода «специализированным процессором», который возьмет на себя самую трудную часть вычислений и оставит классическому процессору фактически только обработку полученных результатов.